
1. Introduction.

This work resulted from trying to show that connected closed

triangulated polyhedral surfaces are generically rigid. We begin by

discussing that problem.

We approach it by considering the underlying edge- vertex frameworks

of such surfaces. A d- framework is a simple graph G and a mapping p from

the vertices of G into K , and is denoted by (G,p); it may be called a

realization of the graph G in IR . If (G,p) and (G,q) are two

realizations of G in IR we say they are equivalent if for every edge

{v-pV-} of G we have |p(v-)-p(v-) | = |q(v-)-q(v-) | , i.e. if corresponding
j j j

edges of the frameworks have equal length. We say they are congruent if

for every pair {v-,v-} of vertices of G, whether it is an edge or not, we
*j

have |p(v-)-p(v-) | = |q(v-)-q(v-) | . For example, the 3- frameworks
«j * j

represented in Figure 1 are all equivalent but only A and B are

congruent .

We say that the d- framework (G?p) is rigid if there exists some

e > 0 such that, whenever (G,q) is another realization of G in IR with

^)-q(v^) | < e for all vertices v^ of G and (G,q) is equivalent to

(G,p), then (G,q) is congruent to (G,p). Otherwise we say (G,p) is

flexible. Given a graph G with v vertices and a fixed dimension d, note

that there is a correspondence between the elements of IR v and the

realizations of G in K by considering the sequence of coordinates of the

image points of the vertices in any realization as an element of IR v. It
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Figure 1. Equivalent frameworks.



has been shown that either the rigid realizations of G form an open dense

set in IR v, or the flexible realizations of G form an open dense set in

K v (see, for example, section 5 of Roth [17]). A graph G is said to be

genericallv d-rigid if its rigid realizations form an open dense set in

K v. Otherwise we say G is genericallv d-flexible. Ve say that a

d-framework is genericallv rigid if its graph is generically d-rigid, and

we say it is genericallv flexible if its graph is generically d-flexible.

For example, the 3-frameworks represented in Figure 2 are

realizations of a generically flexible graph, but the framework B is

rigid. In either case the subframeworks on the vertices w, x, y, z and

on v, w, x, z are rigid, but only when u is collinear with v and y is u

held fixed.

As another example, the 3-frameworks represented in Figure 3 are

generically rigid, but the framework B is flexible. As it flexes its

vertices do not remain coplanar. Its flexibility was first studied by

Bricard [4] and was used by Connelly to make a flexible closed polyhedral

surface (see [7] and [8]).

Recall that a closed polyhedral surface is a surface in 3-space

which is a finite union of polygons which pairwise intersect either

exactly along a common edge, at a common vertex, or not at all. In

evaluating the rigidity of such a structure, we think of it as a

collection of rigid polygonal planar plates connected along their edges

by hinges. In other words, we assume that vertices of a particular plate

are held fixed relative to one another. Removing these plates leaves a

framework which may not have edges between vertices formerly held a fixed

distance apart. For example, if the faces of a cube are rigid plates,
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Figure 2. Realizations of a generically 3-flexible graph.
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Figure 3. Realizations of a generically 3-rigid graph.



the cube is rigid; but if the plates are removed, the underlying

framework is flexible. However, if all the plates of a surface are

triangles then the rigidity is not affected by removing the plates. Ve

therefore say that a closed triangulated polyhedral surface is rigid if

its underlying edge-vertex framework is rigid; otherwise it is called

flexible. We call it generically rigid if its framework is generically

rigid and call it generically flexible otherwise.

Cauchy [6] showed that the surfaces of convex polyhedra are rigid in

1813, but it was not until 1974 that something could be said about the

non-convex case. Gluck [10] showed that simply connected triangulated

closed polyhedral surfaces are generically rigid; a few years later

Connelly [7] found one that is flexible.

By applying Connelly's techniques, one can find flexible examples of

triangulated closed polyhedral surfaces of any topological type; however,

all known connected examples are generically rigid, and it was

conjectured that all connected triangulated closed polyhedral surfaces

are generically rigid. Vhiteley [19] and Graver [11] independently

showed that triangulated toroidal polyhedral surfaces are generically

rigid by showing that the graphs of abstract triangulated tori are

generically 3-rigid. Using a theorem of Vhiteleyfs [21] we show that all

graphs of a class which includes the graphs of abstract triangulated

closed connected surfaces are generically 3-rigid; moreover we show the

generalization of this to higher dimensions.

Informally, Vhiteley!s theorem in dimension 3 can be described as

follows. Suppose we have an edge of a graph that is contained in at

least two triangles. Ve contract this edge to form a smaller graph. The



theorem says that if the contracted graph is generically 3-rigid, so is

the original graph. In Figure 4, contracting the edge {u,w} in the graph

B to the vertex w results in a graph A, and Vhiteley's theorem says that

if A is generically 3-rigid then so is B.

This is immediately applicable to triangulated polyhedral surfaces,

where each edge must be in exactly two surface triangles and possibly

other triangles. One can thus show that a spherical triangulated

polyhedral surface is generically 3-rigid by finding a sequence of

contractions that reduce it to a tetrahedron, which is well-known to be

generically 3-rigid. In choosing these contractions one must avoid

contracting edges which belong to more than two triangles, for

contracting such an edge results in a structure that is not necessarily a

surface, much less a spherical one.

For example, in Figure 5, the edge {w,x} of the polyhedral surface A

can be contracted to form the tetrahedral surface B. The generic

rigidity of B implies the generic rigidity of A. However, in Figure 6 we

contract the edge {v,w} in A, which leaves us with C, simply two

triangles joined along an edge. C is not a polyhedral surface. We left

the category of triangulated polyhedral surfaces because {u,v} is in more

than two triangles. C is not generically rigid and this tells us nothing

about the rigidity of A.

Contracting an edge that is in more than two triangles can also lead

to structures that are almost surfaces. For example, consider Figure 7.

Contracting the edge {u,w} of the toroidal triangulated polyhedral

surface A results in a structure that can be considered either as a

"pinched torus" or as a "sphere with two edges identified."
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Figure 4. A contraction.
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Figure 5.
surface.

Contracting an edge {w,x} of a triangulated polyhedral
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Figure 6.
surface.

Contracting a short edge {v,w} of a triangulated polyhedral
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B

Figure 7. Contracting a short edge {u,w} of a toroidal triangulated
polyhedral surface.
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Vhiteley calls edges of a triangulated polyhedral surface which

belong to more than two triangles short: in addition, he calls a

triangulated polyhedral surface short if either all its edges are short

or it is a tetrahedron. Thus one can show that connected closed

triangulated polyhedral surfaces of a given topological type are

generically rigid by showing that all short surfaces of that type are

generically 3-rigid. It is easy to show that the only short spherical

triangulated polyhedral surface is the tetrahedron. Lavrenchenko [15]

and Griinbaum and Duke [13] independently showed that there are twenty-one

triangulated toroidal polyhedral surfaces, each of which is generically

rigid. Thus we have alternative proofs of the results of Gluck [10] and

Vhiteley and Graver ([19] and [11] respectively).

The definition of short can naturally be extended to triangulations

of any 2-manifold, regardless of whether or not it is embedded in

3-space. Barnette [3] showed that there are only two short

triangulations of the projective plane, the 1-skeletons of which are

generically 3-rigid. Thus altogether it has been shown that the

1-skeleton of any abstract triangulation of the sphere, the torus, or the

projective plane is generically 3-rigid.

Ve will not attempt to lengthen this list by finding more short

triangulations. Instead we carefully examine what happens when a short

edge is contracted. One possible result is a "pseudo-surf ace11 like that

in Figure 7. Using methods from rigidity theory it is possible to show

that, at least when there is a small number of vertices, the underlying

graph of such an object is generically rigid. Along with surfaces, we

would like to show that such structures are generically rigid. Their
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crucial characteristic in common with surfaces is that they can be

considered as cycles of 2-simplices, as in elementary algebraic topology.

So we take the point of view that these triangulated polyhedral

surfaces are realizations of abstract simplicial complexes. In

particular we want to consider complexes that are the support complexes

of 2-cycles with coefficients in Z2? since their realizations in 3-space

include the closed triangulated polyhedral surfaces. It turns out that

the properties of 2L are not important and that it is easier to see what

is going on if we let the coefficients be in some arbitrary abelian

group. Finally, we do not want to include among the objects under

consideration complexes which have realizations like the generically

flexible "pseudo- surf ace11 known as the "two bananas" in Figure 8. For

this reason we introduce the concept of a minimal cycle.

Let c(V) denote the coefficient of an oriented simplex a of a

complex X in a chain c. If c and c7 are p-chains we say c7 is a subchain

of c if for every oriented p-simplex cr of X either c7(>) = c(V) or c'(a}

= 0; if c and c7 are p-cycles and c7 is a subchain of c we say c7 is a

subcvcle of c. Ve say a cycle c is minimal if its only subcycles are 0

and c.

An abstract simplicial complex X is called a p-cycle complex if it

is the support complex of a nontrivial p-cycle. It is called a minimal

p- cycle complex if it is the support complex of a nontrivial minimal

p-cycle.

For example, consider the abstract simplicial complex X represented

in Figure 9 (in which every triangle is the support complex of the

boundary of a 2-simplex). The complex X is the support complex of the
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Figure 8. The "two bananas."
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Figure 9. A minimal 2-cycle complex which contains another 2-cycle
complex as a proper subcomplex.
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cycle c = [o,s,t] + [o,t,u] + [o,u,v] + [o,v,w] + 2[o,w,x] + 2[o,x,y]

+ 2[o,y,z] + 2[o,z,s] + 4[o,s,q] + 4[o,q,w] + 3[o,w,r] + 3[o,r,s]

- [p,s,t] - [p,t,u] - [p,u,v] - [p,v,w] - 2[p,w,x] - 2[p,x,y] - 2[p,y,z]

- 2[p,z,s] - 4[p,s,q] - 4[p,q,w] - 3[p,w,r] - 3[p,r,s] and contains the

support complex of the cycle c' = [o,s,t] + [o,t,u] + [o,u,v] + [o?v5w]

+ [o9w?r] + [o,r,s] - [p,s,t] - [p,t,u] - [p5u?v] - [p?v,w] - [p5w?r]

- [p,r,s], both cycles with coefficients in I. One can check that c is

minimal by our definition, so that X is a minimal 2-cycle complex even

though supp c7 is a proper subset of X.

We shall show that the realizations in 3-space of these minimal

2-cycle complexes are generically rigid. More precisely, since we are

dealing with abstract complexes that may not be realizable in 3-space, we

show that the 1-skeletons of such complexes are generically 3-rigid. In

fact, this result generalizes to higher dimensions and we prove the

following theorem.

Theorem. The 1-skeleton of a minimal (d-1)- cycle complex, d > 3, is

generically d- rigid.

This thesis is organized as follows. Chapter 2 contains the needed

definitions. In Chapter 3 is an outline and explanation of the main idea

of the proof, which is to break up a minimal cycle complex into smaller

rigid complexes such that their union is rigid. In Chapters 4, 5, and 6

are the proofs of the propositions mentioned in Chapter 3. Chapter 7

contains the complete detailed proof of the result. Some applications of

the result are noted in Chapter 8.


