
2. Basic Definitions.

We consider a set to be a collection of distinct objects. We denote

the order of a set S by |S|. 0 denotes the empty set.

An abstract simplicial complex is a nonempty finite set X of

nonempty finite sets such that if a G X and r is a nonempty subset of a

then r € X. The sets which are elements of X are called the simplices of

X. The elements of the simplices of X are called the vertices of X and

we denote the set of vertices of X by V(X). If S c X we define the

vertex set of S, denoted V(S), to be {v e V(X) | v E a for some <r E S}.

A simplex <r of order p+1 is called a p-simplex and is said to be of

dimension p; this is written dim a = p. The set of p-simplices of X is

denoted SP(X). The dimension of X is defined to be max {dim a \ a E X}

and is denoted by dim X. Clearly the union of a finite number of

abstract simplicial complexes of dimension < d is an abstract simplicial

complex of dimension < d.

For clarity we define the join of two simplices <r and r, denoted

a * r, to be that simplex whose vertices are the union of the vertices of

a and the vertices of r. More precisely v * r - a U r because a and r

are simply sets of vertices.

A subcomplex of X is a subset of X which is also an abstract

simplicial complex. Let r be an integer. The r-skeleton of an abstract

simplicial complex X is the set of all p-simplices of X with p < r; it is

denoted Xr. Clearly Xr is a subcomplex of X for r > 0. Ve will use the

17
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fact that the union of the r- skeletons of a finite number of abstract

simplicial complexes is equal to the r-skeleton of the union of the

complexes.

If A is a finite set we denote the power set of A by 2 . Clearly if

A is nonempty then 2 \{0} is an abstract simplicial complex, which we

call the simplex complex on A, and which we denote by A(A). It is also

clear that if |A| > 2 then A(A)\{A} is an abstract simplicial complex,

which we call the simplex boundary complex on A, and which we denote by

A(A).

We need a precise way of describing the contraction used in

Vhiteley's theorem. Let X be an abstract simplicial complex. From here

on we will denote the edge we want to contract by j] - {u,w} and we will

consistently contract {u,w} to the vertex w. Throughout this thesis we

define the function q: V(X) -* V(X)\{u} by

'w if v = u,
q(v) =

v otherwise.

Ve call q the labelling of V(X) contracting a to w. This labelling

induces a function from X to the power set of V(X)\{u} which we will also

denote by q and which is defined as follows: if cr

~ {Vrpvi5v2> • • • ,v } is a p-simplex of X, set q(V) equal to the subset

MvQ^qO^q^), . . . ,q(vp)} of V(X)\{u}. Ve note that q(X) is an

abstract simplicial complex, that for any p-simplex r in q(X) there is a
-r*

p-simplex a in X such that q(V) = r, and that for any integer r, q(X)

= q(Xr). Ve say that the abstract simplicial complex q(X) is formed from

X by contracting the 1-simplex j] into the vertex w. It will be clear

from the context whether we take q to mean the function between the
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vertices of X and q(X) or the function between the simplices of X and

q(X).

A graph is an abstract simplicial complex G such that dim G < 1.

The elements of S (G) are called the edges of G. The set of edges of G

is denoted E(G), i.e. E(G) = S (G). A graph G is called complete if

every pair of distinct vertices of G is contained in an edge of G. A

subgraph G7 of G is any subcomplex of G; it is said to be spanning if it

has the same vertex set as G.

We note that if |A| > 3 then the 1-skeleton of A(A), the simplex

boundary complex on A, is a complete graph.

We use the following basic facts from rigidity theory (see [18],

[1], and [2]).

Proposition 1. A complete graph is generically d-rigid for any d,

Proposition 2. A graph with a generically d-rigid spanning subgraph

is generically d- rigid.

Proposition 3. The union of two generically d-rigid graphs with at

least d common vertices is generically frigid.

We also use the theorem recently proved by Walter Whiteley [21].

Theorem 4. let G be a simple graph and {u,w} = v\ E E(G). Let q be

the labelling of V(G) contracting ij to w. If for some integer d > 2,

q(G) is generically d- rigid and r/ is an edge of at least d-1 distinct

triangles in G, then G is also generically d- rigid.

We now turn to basic definitions from elementary algebraic topology.

Let X be an abstract simplicial complex. Let a be a simplex of X.

Recall that an orientation of <r is an equivalence class of orderings of

the set (r, where two orderings are equivalent if they differ by an even
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permutation. An oriented simplex is a simplex along with one of its

orientations. If a is an oriented p-simplex, p > 0, we let -a denote the

simplex with the opposite orientation. If a = {Vo>vi>v2> * * * '%} ̂ s a

p-simplex we use the symbol [v/pVpVg, . • • ,v ] to denote the oriented

simplex consisting of a and the orientation which includes the ordering

(v0,vl9v2, . . . ,vp).

Let F be an abelian group. A p-chain of X with coefficients in F is

a function c from the set of oriented p-simplices of X to T such that

c(-<r) = -c(0-) for every oriented p-simplex a when p > 0. (This is how

Hilton and Vylie defined a p-contrachain in Homology Theory (1960);

however, the boundary operator they defined with it is the usual one

associated with cochains that raises the dimension. They defined a

p-chain to be a formal sum of p-simplices. We are following the approach

of Munkres [16].) If c and c7 are p-chains we define the p-chain c+c' by

setting (c+c'} (a) = c(<r) + c'(a) for every oriented p-simplex <r of X.

With this addition the set of p-chains becomes an abelian group which we

denote by C (X;T). If p < 0 or p > dim X then we let C (X;T) denote the

trivial group.

For each oriented p-simplex a and each group element g of T we

define an elementary p- chain go- by g<r(<r) - g and g<r(r) = 0 if r ± ±0-. If

we orient all the p-simplices of X, then we can write each p-chain

uniquely as a finite sum of elementary p-chains; in this case we can

consider C (X;T) to be simply the group of formal sums of the oriented

p-simplices with coefficients in G.

We say a simplex a appears in a chain c if c(<r) is nonzero when a is

oriented.
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Suppose S is a subset of X. We say that a chain c is carried by; S

if every simplex appearing in c is an element of S.

Let c e C (X;T). Let S be the set of simplices that appear in c.

Then U A(V) is a subcomplex of X which we call the support complex of c
<7GS

and which we denote by supp c.

We define a homomorphism d : C (X;T) -> C (̂X;T) by setting

V ? V ' V ' ' * ' 'V equal to

-1)1[V
vi>v2> . . . ,v iB-1,v.,v i+l l . . . ,v]

for each oriented p- simplex [vQ5vi?v9? • • • ?v ] ? where the symbol v-

means that the vertex v. is not in the simplex; if p < 0 or if p > dim X

we let d be the trivial map. We call d the boundary operator. We

define d (g<r) to be g(d a). It is well-known that d is well-defined,

that d (-a) = -9 (a) for every oriented p- simplex in X, and that

furthermore the composition d _* o d = 0.

If p = [V0?v;pv2? • • • ,v ] is an oriented p- simplex of X and

{u,w} n p = 0 we denote the equivalence class of orderings

[w,v0,v1?v2, . . . ,vp] by [w,/9] and [u?w?v0?vpv2? . . . ,vp] by

[u5w?/?] . If p is not a 0-simplex then [w,#/>] denotes the chain dp with w

inserted as the leftmost element in each term of dp and [u,w,#/?] is

similarly defined. If p = [VQ] then [w,dp] denotes [w] and [u,w,̂ /?]

denotes [u,w] .

If u 6 V(X), suppose Tp r<yi ?"Q? . . . , TI are oriented p-simplices

of X, not necessarily distinct, such that [u,r̂ ], [u,̂ ],

[u,T], . . . , [u'r] are also oriented simplices of X. Then for any
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k
elements gp gg, gg, . . . 9 g^ in some abelian group T, E g^r^ = 0 if

k
and only if £ g^[u,r^] =0.

We will use the following elementary lemma.

Lemma 5. Suppose that c is a p- chain of an abstract simplicial

complex X with coefficients in some abelian group T. Let r be a

(p- 1)- simplex of X. Let S be the set of p-simplices of X containing r.

If S is empty then dc(r) = 0. Otherwise, if r and the elements of S are

oriented so that r appears in da with a + sign for each a e S, then dc(r)

= £ c(<r).
<7ES

The kernel of d : C (X;F) -» C .(XjF) is called the group of

D- cycles of X with coefficients in T and is denoted Z (X;T) .

Let {u,w} e S1(X). Above we defined the labelling q of V(X)

contracting {u,w} to w. Recall that the chain map induced by q is a

homomorphism q,,: C (X;T) -> C (q(X);T) defined on oriented p-simplices of

X as follows: q^([v05v1?v2, . . . ,vp])

)'q(vî q(v2)' • • • >q(vp)3
 if q(vo)? q(vi)> q(v2)? • • • > q(vp)

are distinct and is trivial otherwise. It is well-known that q,, is

well-defined and that q» commutes with the boundary operator. Another

elementary lemma we will use follows.

Lemma 6. Suppose that c is a p- chain of X with coefficients in some

abelian group T. Let r be an unoriented ^-simplex in the abstract

simplicial complex q(X) . Let S be the set of unoriented p-simplices of X

in q (r). // S is empty then the coefficient of the p- chain q»(c) on r,
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when oriented, is 0. Otherwise, if r and the elements of S are oriented

so that qjf(<r) = r for each cr G S, then (qu(c))(r) = E c(V).
ff , ff ^g

For completeness we repeat here the definition of minimal subchain

given in Chapter 1. If c and c7 are p-chains we say c7 is a subchain of

c if for every oriented p-simplex a of X either c7(V) = c(<r) or c7(V) = 0

(we say c7 is a proper subchain of c if c7 / c); if c and c7 are p-cycles

and c7 is a subchain of c we say c7 is a subcvcle of c. Ve say a cycle c

is minimal if its only subcycles are 0 and c.

X is called a p-cycle complex if it is the support complex of a

nontrivial p-cycle. It is called a minimal p-cycle complex if it is the

support complex of a nontrivial minimal p-cycle.

If p > 0 let A = {vQjVpVg, • • • ?VD+I}
 and consider A (A), the

simplex boundary complex on A, which is a subcomplex of A(A), the simplex

complex on A. Set <r = [VQ^^VJ, • - . ?VD+J] • Then da is a p-cycle on

A(A) with coefficients in TL and clearly supp dcr = A(A). It is easy to

show that the p-cycle complexes with the fewest vertices must be simplex

boundary complexes on sets of p+2 vertices. Ve note that such p-cycle

complexes are minimal and that their 1-skeletons are complete graphs.

To justify the remaining definitions we consider a few examples.

In Figure 10 we see that contracting the edge {u?w} of the minimal

2-cycle complex A results in two tetrahedra joined along an edge, a

flexible object B. We consider the two tetrahedra C and D singly. The

inverse image of C under the contraction is the complex E, which is a

spherical triangulated polyhedral surface with the face {u,v,w} removed.

The inverse image F of the tetrahedron D is a similar structure. The
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w

Figure 10. A decomposition induced by a contraction,
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union of E and F is A. Now by Proposition 1 the tetrahedra C and D are

generically 3-rigid. By Proposition 4 (Whiteley's theorem) this implies

that E and F are generically 3-rigid. Then since E and F have 3 vertices

in common, by Proposition 3 the complex A is generically 3-rigid.

The proof of the result follows the same lines. There are two

revisions that seem to work better in the general case. One is that we

find the decomposition of the cycle complex without first contracting the

edge. The details of this are in Chapter 3. The other change is that we

add the missing faces to the pieces we break the complex into: this

keeps us working in the category of minimal cycle complexes and will

later help us keep account of the pieces. Along with these revisions it

is also helpful to see how a contraction classifies the simplices of a

complex. Consider the 2-cycle complex X in Figure 11.

We notice that the simplicial map q which contracts the edge

TI = {u,w} into w naturally divides the simplices of X into three disjoint

classes. First of all, there are those which lose a dimension when 77 is

contracted; these are exactly those which make up the star of rj in X,

denoted St(7/,X), i.e. those simplices which contain ?/. The set of the

remaining simplices we call the antistar of ?/ in X, denoted Ast(?/?X).

Secondly, there are pairs of simplices which are mapped together by

q, not losing any dimension; this set we call the suspension of TJ in X,

denoted Susp(?/,X). The suspension of rj in X is the collection of

simplices {{u,y,z},{w,y,z},{u,v},{w,v},{u,x},{w,x},{u,y},{w,y},{u,z},

{w,z},{u},{w}}. This set is somewhat harder to define in general.

Recall that the link of a vertex u in a complex X is the set of simplices

a not containing u such that a * {u} is another simplex of X. Ve define
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u

Figure 11. The suspension of the edge {u,w} in the complex X: {{u,y,z},
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the equator of the edge 77 = {u,w} in X to be the set of simplices that

are in the link of both u and w. In Figure 11 these are {v}, {x}, {y},

{z}, and {y,z}. Finally, we define the suspension of r/ in X to be those

simplices which are equal to either p * {u} or p * {w} for some p either

in the equator of j] or equal to the empty set.

Thirdly, there are those simplices which are neither in the star or

the suspension of r/. Ve call this set the antisuspension of ?/ in X,

denoted Asusp(?/,X).

Note that the star, suspension, and antisuspension of 77 in X are not

subcomplexes of X, although the antistar and equator are.

If r E Susp(f/,X) we define the rf- con jugate of r, denoted r*, to be

the set (r * {u,w})\(r D {u,w}), i.e. the simplex which gets mapped

together with r by q; it follows from the definitions that r* is a

simplex in Susp(?/,X). Ve call the pair (r,r*) an ^-suspension pair;

also, we use r to denote the set r n r*, which is either the empty sett?
or a simplex in Eq(?/,X).

Eq(?/,X) and Susp(?/,X) have the following additional properties.

(i) If p E Eq(?/,X), then p n y'= 0, {p * {u}, p * {w}} C Susp(?/,X),
*

and (p * {u}) = p * {w}.

(ii) If r E Susp(?/,X), then either r = r * {u} and r* = r * {w},t? tj
or r - r * {w} and r* = r * {u}. Hence (r*)* = r, \r n rj\ = 1, andt? t?
Susp(?/,X) c Ast( i / ,X) .

(iii) If T E St(//,X), then T\J/ E Eq(?/,X) U {0} and (j\{u)? A{
wl) is

a ?/-suspension pair.

Furthermore, if q is the labelling of V(X) contracting rj to w the

following properties hold.
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(iv) If r 6 SuspO,X), then q"1(q(r)) c {r,r*,r*r*}, and q(r*)

(v) If r e Asusp(?/,X), then q" (q(r)) = {r}.

(vi) q(Susp(̂ ,X)) n q(Asusp(?/,X)) = 0.

Suppose that c is a p- chain on X. Ve will use the following easily

proved properties.

(vii) If c is carried by St(?/,X), then dc is carried by

St(?/,X) U Susp(7/,X).

(viii) If c is carried by Ast(?/,X), then dc is carried by Ast(ijf,X).

Finally, suppose that c is a nontrivial p- cycle, p > 0, and that i\

is a 1- simplex of supp c. It is easy to show that neither St(?/, supp c)

nor Ast(?/, supp c) carries c.

Recall that in Figure 10 the complexes into which the cycle complex

A decomposes are cycle complexes themselves minus a few faces. Notice

that the missing face {u?v,w} would be in the star of {u,w}. Also v is

in the equator of {u,w} while {u,v} and {w,v} are in the suspension of

{u?w}. If p > 2, in breaking up a p- cycle complex X into subcomplexes we

will be aided considerably if we can assume that for every ^-suspension

pair of (p- l)-simplices (r,r*) (or equivalently for every (p- 2)- simplex p

in Eq(?/,X)) that the corresponding p- simplex r * r* (or p * VJ) actually

is a simplex (in the star of r/) in X.

In general, of course, an abstract simplicial complex X will not

have this property, so we add to it the necessary simplices. For p > 2

denote the collection of sets {p * rj | p is a (p- 2)- simplex in Eq(?/,X)}

by KP(//,X). If KP(?/,X) / 0, then X U ( U A(T)) is an abstract
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simplicial complex, which we denote by X; otherwise we let X denote X.

In either case we call X the p-completion of X over r/. It is easy to

show that the 1-skeletons of X and X are the same, and hence are equally

rigid.

The simplices which are added to the complex X in Figure 11 to form

its 2-completion X over r) are {u,w,y} and {u,w,z}. The needed

2-simplices {u,w,v} and {u,w,x} are already in X.

Note that if 77 is a 1-simplex of X and X is the p-completion of X

over rj then Ast(?/,X) = Ast(?/,X).

We will use the following properties of the p-completion X of a

complex X over a 1-simplex q = {u?w}.

(ix) If r is a (p-1)-simplex in Susp(7/9X), then r * r* is a

p-simplex in St(?/?X).

(x) If pp pgj PQJ • • • 5 P^ are th6 distinct (p-2)-simplices in

Eq(?/,X), then rj * p^ q * p^ v\ * p^ . . . , r/ * p, are the distinct

p-simplices in St(?/?X).

(xi) If q is the labelling of V(X) contracting rj to w and r is a
~ 1(p-1)-simplex in Susp(?/,X)9 then q" (q(r)) = {r?r*,r*r*}.

Now we are ready to begin considering how to break up complexes.


