
3. The Decomposition of a Minimal p-Cycle Complex.

Throughout this dissertation keep in mind that we have defined X as

the p-completion of X over rj only when p > 2.

Let X be the minimal 2-cycle complex in Figure 11. Let c be the

minimal 2-cycle on X with coefficients in ]L suc^ that X = supp c. Let

c' be the restriction of c to the antistar of T/ = {u,w} in X, i.e.

c - [u,w,v-.] - [UjW^Vo]. We will break this chain into pieces to

determine how X breaks up. dc' = [u9Vj] + [w?v.] + [iijVg] + [W^VQ] is

carried by Susp( ?̂X). This is true in general: the chains c' and c-c7

are carried by Ast(?/,X) and St(7/,X) respectively. Hence dc' is carried

by Ast(?/,X) while #(c-c7) is carried by St(?/?X) U Susp(?/,X). But

#(c-c7) = -de' because c is a cycle. Thus dc' must be carried by

Susp(?/,X).

A decomposition of c7 modulo Susp(ty,X) is defined to be a nonempty

set D = {CpCojCo, . . . ,Ci } of nontrivial subchains of c7 such that

every simplex appearing in c7 appears in exactly one subchain in D and

dc- is carried by Susp(?/?X) for 1 < i < k. In fact, we need a particular

kind of decomposition of c7 modulo Susp(?/,X). In order that we break up

X into minimal cycle complexes we require the chains c- to be minimal

modulo Suspfy/.X)« meaning that no subchain of c- ? except c- and 0, has

its boundary chain carried by Susp(?/9X). D is said to be maximal if c.

is minimal modulo Susp(;/9X) for 1 < i < k. We note that because #c7 is
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carried by Susp(7/,X) there exists a maximal decomposition of c' modulo

Susp(?/,X).

In the case of the complex X in Figure 11 we consider the maximal

decomposition D = {c.̂ jCg}, where Cg = [u,y,z] + [w,y,z] , c. is the

restriction of c' - Co to the right half of Figure 11, and c^ is the

restriction of c7 - Cg to the left half of Figure 11.

We can now use the 2-simplices in the St(7/,X) to make cycles out of

Cp Cg, and Cg. Let 6-. = c^ + [u,w?v] + [u?w,y], c^

- c<2 + [u,w,x] + [u,w,z], and Cg = Cg + [u,w,y] + [u,w9z] . Figure 12

shows their support complexes. In the general case it may not be so

clear how to proceed. We will need to use the following proposition,

which is proved in Chapter 4.

Proposition 10. // c- is carried by Ast()?9X) and dc- is carried by

Susp(7/,X) then there is a unique chain b- carried by St(̂ ,X) such that

5bi = dc^

We call the cycle c- = c- - b- the completion of c- over ̂ .

The support complexes of the completions of the c - f s are the pieces

into which we break up X. We need to show that each piece is generically

d-rigid.

We could show that each piece itself is a minimal cycle complex. In

most cases these complexes will have fewer vertices than X and so can be

assumed rigid in an induction argument. Then we would have to deal with

the possibility that the number of vertices of a piece is not smaller

than the number of vertices of X. Ve avoid this approach and instead

show that either a piece is a simplex boundary complex or else it
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Figure 12. The support complexes of the completions of Cp c^, and
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contracts to a minimal cycle complex which certainly has fewer vertices

than X. This is Proposition 13, which is proved in Chapter 5.

Proposition 13. If c- is a p- chain that is minimal modulo

Susp(?/,X),, then

(i) the chain qjf(c-) is a minimal p-cycle, and

(ii) either the complex q(supp c-) equals the support complex of

qjj(£-j) or else the support complex of c- is the simplex boundary complex

A(V(supp £•)) on its own vertex set.

For example, suppose supp c., supp c^ and supp Co are again the

complexes in the lower half of Figure 12. Figure 13 shows the contracted

complexes q(supp c.), q(supp £«), and q(supp Co)• The complexes

q(supp 6̂ ) and q(supp Cg) are the support complexes of the minimal

2-cycles QJI(C^) and q^Cg) respectively. A similar statement is not true

of q(supp Co); however, supp Co is a tetrahedron.

This proposition tells us enough about the properties of the pieces

to determine their rigidity. In the specific case of the complex we have

just been looking at, supp Co is generically 3-rigid because it is a

tetrahedron. Because q(supp c.) and q(supp 69) are simply connected

surfaces they are generically 3-rigid. By Vhiteleyfs theorem it follows

that supp (L and supp c* are also generically 3-rigid. In the general

case we will be working under the hypothesis that minimal (d-1)-cycle

complexes with fewer vertices than X are generically d-rigid. Hence we

need part (ii) of Proposition 13 to insure that if supp c- is not a

simplex boundary complex then q(supp £•) is a minimal (d-1)-cycle

complex. Thus in any case supp c- is generically d-rigid.
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Figure 13. Contracting the complexes into which X decomposes.
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It remains to show that the union of the pieces is generically

d-rigid and equal to X. In our example it is easy to check that the

union of these three 1-skeletons is equal to the 1-skeleton of X.

Moreover, supp c. and supp Co share the vertices u, w? and y and so their

union is generically 3-rigid. This union and supp Cg have u, w, and z in

common and so X is generically 3-rigid.

This sort of adding on the pieces one by one is what happens in the

general case. We make the following definitions.

A finite collection C of sets is said to be connected with

multiplicity d if for every bipartition {Ĉ }̂ of C there are sets

S^ E C^ and 82 £ C% w^^ at least d common points.

A subgraph family of a graph G is a finite collection F

= {GpG2?Gg? . . . ,GjJ of subgraphs of G. F is said to be vertex

connected with multiplicity d if the collection of vertex sets

{V(G1),V(62),V(63), . . . ,V(Gk)} is connected with multiplicity d. And

we say that F is vertex covering if {V(G1)9V(G2)5V(Gg)5 . . . ,V(Gk)}

covers V(G).

We use a generalization of the basic theorem that the union of two

generically d-rigid graphs with d common vertices is generically d-rigid.

Proposition 14 is proved in Chapter 6.

Proposition 14. If a graph G has a vertex covering subgraph family

of generically d- rigid subgraphs that is vertex connected with

multiplicity d then G is generically d- rigid.

Thus we want to show that the family of 1-skeletons of our

generically rigid pieces is a vertex covering subgraph family of the



36

1-skeleton of X that is vertex connected with multiplicity d. For this

we have Proposition 15, which is also in Chapter 6.

Proposition 15. If {CpC2,Co, . . . 9c^} is a decomposition of c'
k

modulo Susp(?/,X), then £ c- = c. Furthermore, if G. denotes the
i=l x J

l-skeleton of supp c^ for 1 < i < k, then {G^^G^^G^^ . . . ,Ĝ } is a
k

vertex covering subgraph family of U G- that is vertex connected with
i=l l

multiplicity d.
k

Because X = supp e c u supp c. we are thus assured that the pieces
i=l "̂  l

add up to X and force X to be generically rigid.

This completes our discussion of decompositions. The remaining

chapters are devoted to proving the propositions mentioned above and the

result.


