
8. Some Applications.

As discussed in the introduction, our result immediately implies

that any connected triangulated closed polyhedral surface is generically
3rigid. Whether or not the surface can be embedded in R is irrelevant to

our theorem. Thus we have the following corollary.

Corollary. The 1-skeleton of any abstract triangulation of a

1- manifold is generically 3- rigid.

Here are two applications of this corollary.

In Chapter 1 we introduced as quickly as possible the definition of

generic rigidity, which is all that is necessary to prove the result.

But there is another type of rigidity for frameworks that is related to

the rigidity that we have discussed and which is important in its own

right, namely static rigidity. Presented here are the barest details.

For more information see [18] , [17] , and [10] .

A load L = (L-pI^Lo, . . . ,L ) on a 3- framework is an assignment

of 3- vectors (forces) to the vertices. A resolution of the load L by the

framework is an assignment of scalars 0. - to the edges such that
j

SON. (p(v̂ )-p(v.)) + L^ = 0 (sum over j with {v^,v-} an edge) at each
j "~ j ~" "" j

vertex v-. An equilibrium load is load such that (i) £L. = 0 (sum over

all vertices), and (ii) SL-xp(v-) = 0 (sum over all vertices). The

3- framework is statically rigid if every equilibrium load has a

resolution.
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The relationships between the types of rigidity we have mentioned

are well known. We note three facts here. If a 3-framework is

statically rigid, then it is rigid. A graph is generically 3-rigid if

and only if it has some realization in 3-space which is statically rigid.

Statically rigid realizations in 3-space of a given graph form an open

set in K3v.

Our interest is in a theorem about the rigidity of a polar of a

polyhedral surface. A polarity is a correspondence which relates each

point to a plane (called the polar of the point) and each plane to a

point (called the polar of the plane), such that the polar of the polar

of a point (or plane) is itself and such that incidence is preserved (see

for instance [5] and [9]). If we think of a polyhedral surface P as

being a collection of planes and vertices with an incidence relation,

then its polar P7 (under a given polarity) is the collection of vertices

polar to the planes of P and planes polar to the vertices of P, along

with the same incidence relation. To include collections that may not

arise from surfaces, we take the following definitions, slightly

modified, from Vhiteley [20].

An abstract polyhedral surface is pair of sets V (vertices) and F

(faces) with an incidence relation between them such that: (i) between

any face and any vertex there is an alternating sequence of faces and

vertices such that a face and a vertex adjacent in the sequence are

incident; (ii) the faces f^ in F incident with a vertex v- in V form a

cycle of distinct faces f^, f?, fj, . . . , f? (s > 3); (iii) the
«j «j »j «j

vertices v. in V incident with a face i in F form a cycle of distinct
»j

vertices vj, Vg, Vg, . . . , v^ (t > 3). Each pair of vertices v., v^
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adjacent in a cycle for f are adjacent in exactly one other face f , and

this pair of faces is adjacent in the two cycles of these vertices. Each

pair of faces f , f1 adjacent in a cycle for v. are adjacent in exactly
j

one other vertex v^, and this pair of vertices is adjacent in the two

cycles of these faces. The two associated pairs (f jf^v^Vi) or simply
J K

(h,i;j,k) are called an edge of the abstract polyhedral surface.

An image of an abstract polyhedral surface is a collection of points

and planes in 3-space such that each point corresponds to a vertex and

each plane to a face, and such that the point for a vertex lies on the

plane for a face if the vertex and face are incident in the abstract

polyhedral surface. On each of these planes is the polygonal disk

bounded by the polygon formed by the cycle of vertices around the

corresponding face. The union of these polygonal disks may be a surface,

and thus a polyhedral surface; however, it might instead be

self-intersecting.

A sharp image of an abstract polyhedral surface is an image of an

abstract polyhedral surface such that: (i) the faces at an edge are

distinct planes; (ii) the vertices of an edge are distinct points;

(iii) the vertices incident with each face span the plane; (iv) the faces

incident with each vertex meet only in this point.

Note that a polar of an image of an abstract polyhedral surface is

an image of an abstract polyhedral surface, and a polar of a sharp image

of an abstract polyhedral surface is a sharp image of an abstract

polyhedral surface.
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A surface image framework is the underlying vertex-edge framework of

a sharp image of an abstract polyhedral surface with additional edges

across each face triangulating the face (no triangle collinear).

Vhiteley [20] proved that a surface image framework on a sharp image

of an abstract polyhedral surface is statically rigid if and only if one

(and therefore all) surface image frameworks on a polar image of an

abstract polyhedral surface is statically rigid. He noted that our

result and the above theorem together imply the following theorem. We

say an abstract polyhedral surface is simple if each of its vertices has

degree 3.

Theorem. For any simple abstract polyhedral surface there exists a

sharp image on which any surface image framework is statically rigid, and

therefore rigid.

Proof. The dual of a simple abstract polyhedral surface X is a

triangulated abstract polyhedral surface X7, the 1-skeleton G7 of which

is generically 3-rigid. Hence there is a statically rigid realization F7

of G' in 3-space, to which, since X7 is triangulated, naturally

corresponds an image I7 of the abstract polyhedral surface X7. Note that

F7 is a surface image framework on I7. Because the statically rigid

realizations of G7 form an open set in i , we can choose the vertices of

I7 so that I7 is sharp. Then any polar of I7 is a sharp image of X on

which any surface image framework is statically rigid, and thus rigid.

Q.E.D.
A completely different application of the corollary of our result

has been pointed out by Kalai [14]. This corollary implies a couple of

theorems about the lower bound on the number of simplices of a
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pseudomanifold (which Kalai remarked could also be proved by methods

developed by Gromov [12]). He defines a pseudomanifold as follows.

A simplicial complex X is pure if all its maximal simplices have the

same size. Maximal simplices of a pure simplicial complex are called

facets. Two facets cr, r of a pure simplicial complex are adjacent if

they intersect in a maximal proper simplex of each. A pure simplicial

complex X is strongly connected if for every two facets a and r of X,

there is a sequence of facets a = <TQ, <r. , 0*2? • • • -> am ~
 T-> suc^ *̂ a*

(r. and <r- .j are adjacent, 0 < i < m.

A d- pseudomanifold is a strongly connected d- dimensional simplicial

complex, such that every (d- 1)- simplex is contained in exactly two

facets. A d- pseudomanif old with boundary is a strongly connected

d- dimensional simplicial complex, such that every (d-1)- simplex is

contained in at most two facets. For a d- pseudomanif old with boundary X,

the boundary of X, #X, is the (d-1)- dimensional pure simplicial complex

whose facets are those (d-1)- simplices of X which are included in a

unique facet of X.

Let fi.(X) be the number of k- dimensional simplices of an abstract

simplicial complex X. Define ^v(n,d) by

(k l n - f e l l* for 1 < k < d - 2 >W Ik+lJ* (n,d) =
1 (d-l)n - (d+l)(d-2) for k = d-1.

Kalai showed that the following theorem reduces to the above corollary.

The Lower Bound Theorem for Pseudomanif olds, (i) If X is a

(d- 1)- pseudomanij 'old with n vertices, then fu(X) > p>i (n,d) for 1 < k

< d-1.
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(ii) If equality holds for some k, 1 < k < d-1, then X is a stacked

(d-1)- sphere.

A stacked d-ball is defined recursively as follows. A simplex

complex on a set of d+1 vertices is a stacked d-ball. Let X be a stacked

d-ball and let a be a (d-1)- simplex of X. Let v be some vertex not in X

and let Y be the simplex complex on the set cr * {v}. Then X U Y is also

a stacked d-ball. A stacked fd- 1)- sphere is the boundary of a stacked

d-ball.

Define ( n n d ) by

l [nb + (d-1)̂  - (d-1) for k - d-1.

Kalai remarked that the following theorem also follows from the above

corollary.

The Lower Bound Theorem for Pseudomanifolds with Boundary . Let X be

a (&-l}-pseudomanifold with nonempty boundary. If X has n. vertices in

the interior and ni vertices in the boundary then

(i) fk(X) > ^(n-,nb,d) for 1 < k < d-1.

(ii) If equality holds for some k, 1 < k < d-1, then X is a stacked

(d-1}- ball.
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