4. Chains and Contractions: the Proof of Proposition 10.

To prove Proposition 10 we need some facts about particular chains under contractions.

Suppose X is an abstract simplicial complex, $\{\mathrm{u}, \mathrm{w}\}=\eta \in \mathrm{S}^{1}(\mathrm{X})$, and q is the labelling of $\mathrm{V}(\mathrm{X})$ contracting η to w. We say an η-suspension pair $\left(\tau, \tau^{*}\right)$ is coherently oriented if $\mathrm{q}_{\#}(\tau)=\mathrm{q}_{\#}\left(\tau^{*}\right)$. The simplices τ and τ^{*} are coherently oriented if and only if the set of oriented simplices $\left\{\tau, \tau^{*}\right\}$ equals one of the following: (i) $\{[\mathrm{u}],[\mathrm{w}]\}$; (ii) $\{[\mathrm{v}, \mathrm{u}],[\mathrm{v}, \mathrm{w}]\}$ for some $\mathrm{v} \in \mathrm{V}(\mathrm{X}) \backslash \eta$; or (iii) $\left\{\left[\mathrm{u}, \tau_{\mathrm{e}}\right],\left[\mathrm{w}, \tau_{\mathrm{e}}\right]\right\}$ for some orientation of τ.

Proposition 7. Suppose that c is a p-chain of X with coefficients in some abelian group Γ. Then $\mathrm{c} \in \operatorname{Ker} \mathrm{q}_{\#}$ if and only if
(i) $\mathrm{c}(\tau)=0$ if τ is an oriented p - simplex of $\operatorname{Asusp}(\eta ; \mathrm{X})$, and
(ii) $\mathrm{c}(\tau)+\mathrm{c}\left(\tau^{*}\right)=0$ if $\left(\tau, \tau^{*}\right)$ is a coherently oriented η-suspension pair of p - simplices.

Proof. Suppose c $\in \operatorname{Ker} \mathrm{q}_{\#}$. Let τ be an unoriented p - simplex in $\operatorname{Asusp}(\eta, \mathrm{X})$. Consider $\pi=\mathrm{q}(\tau)$. $\operatorname{dim} \pi=\operatorname{dim} \tau$ and $\mathrm{q}^{-1}(\pi)=\{\tau\}$. Suppose τ is oriented and orient π so that $\mathrm{q}_{\#}(\tau)=\pi$. Because $\mathrm{c} \in \operatorname{Ker} \mathrm{q}_{\#}, 0$ $=\left(\mathrm{q}_{\#}(\mathrm{c})\right)(\pi)=\mathrm{c}(\tau)$, by Lemma 6 .

Let $\left(\tau, \tau^{*}\right)$ be a coherently oriented η-suspension pair of p -simplices of X. Consider $\pi=\mathrm{q}(\tau)=\mathrm{q}\left(\tau^{*}\right)$. Now $\mathrm{q}^{-1}(\pi) \subset\left\{\tau, \tau^{*}, \tau * \tau^{*}\right\}$ and $\mathrm{p}=\operatorname{dim} \pi$ $=\operatorname{dim} \tau=\operatorname{dim} \tau^{*}$, but $\operatorname{dim}\left(\tau * \tau^{*}\right)=\mathrm{p}+1$. We can orient π so that $\mathrm{q}_{\#}(\tau)$ $=\pi$. Then because τ and τ^{*} are coherently oriented $\mathrm{q}_{\#}\left(\tau^{*}\right)=\pi$. Because
$\operatorname{dim}\left(\tau * \tau^{*}\right) \neq \mathrm{p}$, by Lemma 6, $\mathrm{c}(\tau)+\mathrm{c}\left(\tau^{*}\right)=\left(\mathrm{q}_{\#}(\mathrm{c})\right)(\pi)$, which is 0 since $c \in \operatorname{Ker} \mathrm{q}_{\#}$.

Conversely, suppose c satisfies conditions (i) and (ii). Let π be an oriented p-simplex in $q(X)$. Recall that there must be a p-simplex $\tau \in \mathrm{X}$ such that $\mathrm{q}(\tau)=\pi$. Orient τ so that $\mathrm{q}_{\#}(\tau)=\pi$. If $\tau \in \operatorname{Asusp}(\eta, \mathrm{X})$ then $\mathrm{q}^{-1}(\pi)=\{\tau\}$ and so by Lemma $6\left(\mathrm{q}_{\#}(\mathrm{c})\right)(\pi)=\mathrm{c}(\tau)=0$. If $\tau \in \operatorname{Susp}(\eta, \mathrm{X})$ then $\mathrm{q}^{-1}(\pi) \subset\left\{\tau, \tau^{*}, \tau * \tau^{*}\right\}$ and $\mathrm{q}\left(\tau^{*}\right)=\pi$; because $\operatorname{dim} \tau=\mathrm{p}$ $=\operatorname{dim} \tau^{*}$ and $\operatorname{dim}\left(\tau * \tau^{*}\right) \neq \mathrm{p}$, by Lemma $6\left(\mathrm{q}_{\#}(\mathrm{c})\right)(\pi)=\mathrm{c}(\tau)+\mathrm{c}\left(\tau^{*}\right)$ if τ^{*} is also oriented so that $\mathrm{q}_{\#}\left(\tau^{*}\right)=\pi$. In this case τ and τ^{*} are coherently oriented and so $\left(q_{\#}(c)\right)(\pi)=c(\tau)+c\left(\tau^{*}\right)=0$. Finally, if $\tau \in \operatorname{St}(\eta, \mathrm{X})$ then $\operatorname{dim} \pi=\operatorname{dim} \tau-1$, contradicting our choice of τ. Hence for any oriented p-simplex π in $q(X)$ we have $\left(q_{\#}(c)\right)(\pi)=0$. Thus $q_{\#}(c)$ $=0$. Q.E.D.

Proposition 8. For $\mathrm{p}>0$ suppose that c is a p - cycle of X with coefficients in some abelian group Γ. If c is carried by $\operatorname{St}(\eta, \mathrm{X}) \cup \operatorname{Susp}(\eta, \mathrm{X})$, then $\mathrm{q}_{\#}(c)=0$.

Proof. Suppose τ is an oriented p -simplex of $\operatorname{Asusp}(\eta, \mathrm{X})$. Because c is carried by $\operatorname{St}(\eta, \mathrm{X}) \cup \operatorname{Susp}(\eta, \mathrm{X})$ we have $c(\tau)=0$.

Suppose τ is an oriented p-simplex in $\operatorname{Susp}(\eta, \mathrm{X})$. Orient τ^{*} so that τ and τ^{*} are coherently oriented. Because $p>0,\left\{\tau, \tau^{*}\right\} \neq\{[\mathrm{u}],[\mathrm{w}]\}$.

If $\left\{\tau, \tau^{*}\right\}=\left\{\left[\mathrm{u}, \tau_{\mathrm{e}}\right],\left[\mathrm{w}, \tau_{\mathrm{e}}\right]\right\}$ for some orientation of τ_{e}, then consider $\partial c\left(\tau_{\mathrm{e}}\right) . \quad \tau_{\mathrm{e}}$ appears in $\partial\left[\mathrm{u}, \tau_{\mathrm{e}}\right]$ and $\partial\left[\mathrm{w}, \tau_{\mathrm{e}}\right]$ with + signs. Any other unoriented p-simplex ρ containing τ_{e} contains neither u nor w and so is not in $\operatorname{St}(\eta, \mathrm{X}) \cup \operatorname{Susp}(\eta, \mathrm{X})$; hence for either orientation of $\rho, \mathrm{c}(\rho)$ $=0$ by hypothesis. So by Lemma $5 \partial c\left(\tau_{\mathrm{e}}\right)=\mathrm{c}\left(\left[\mathrm{u}, \tau_{\mathrm{e}}\right]\right)+\mathrm{c}\left(\left[\mathrm{w}, \tau_{\mathrm{e}}\right]\right)$. Because c is a cycle we have $0=c(\tau)+c\left(\tau^{*}\right)$.

Otherwise $\left\{\tau, \tau^{*}\right\}=\{[\mathrm{v}, \mathrm{u}],[\mathrm{v}, \mathrm{w}]\}$ for some $\mathrm{v} \in \mathrm{V}(\mathrm{X}) \backslash \eta$ and so τ_{e} $=[\mathrm{v}]$. By an argument similar to that used above we still have 0 $=\mathrm{c}(\tau)+\mathrm{c}\left(\tau^{*}\right)$.

Thus $c \in \operatorname{Ker} q_{\#}$ by Proposition 7. Q.E.D.
Proposition 9. Let $\tilde{\mathrm{X}}$ be the p - completion of X over η. Suppose that c is a $(\mathrm{p}-1)$-cycle of $\tilde{\mathrm{X}}$ with coefficients in some abelian group Γ, and that c is carried by $\operatorname{Susp}(\eta, \tilde{X})$.
(i) If $\rho_{1}, \rho_{2}, \rho_{3}, \ldots, \rho_{\mathrm{k}}$ are the distinct ($\mathrm{p}-2$)-simplices in $\mathrm{Eq}(\eta, \tilde{\mathrm{X}})$, arbitrarily oriented, then there exist unique $\mathrm{g}_{1}, \mathrm{~g}_{2}$, $\mathrm{g}_{3}, \ldots, \mathrm{~g}_{\mathrm{k}}$ in Γ such that $\mathrm{c}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left(\left[\mathrm{w}, \rho_{\mathrm{i}}\right]-\left[\mathrm{u}, \rho_{\mathrm{i}}\right]\right)$.
(ii) There is a unique p -chain b carried by $\operatorname{St}(\eta, \tilde{\mathrm{x}})$ such that $\partial \mathrm{b}$ $=$ c. It is $\mathrm{b}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left[\mathrm{u}, \mathrm{w}, \rho_{\mathrm{i}}\right]$.

Proof. (i) For $1 \leq \mathrm{i} \leq \mathrm{k}$, because $\rho_{\mathrm{i}} \in \mathrm{Eq}(\eta, \tilde{\mathrm{x}})$ we have that the pair of oriented ($\mathrm{p}-1$)-simplices $\tau_{\mathrm{i}}=\left[\mathrm{u}, \rho_{\mathrm{i}}\right]$ and $\tau_{\mathrm{i}}{ }^{*}=\left[\mathrm{w}, \rho_{\mathrm{i}}\right]$ is a coherently oriented η-suspension pair. By the definition of the suspension of η in $\tilde{\mathrm{X}},\left(\tau_{1}, \tau_{1}{ }^{*}\right),\left(\tau_{2}, \tau_{2}{ }^{*}\right),\left(\tau_{3}, \tau_{3}{ }^{*}\right), \ldots,\left(\tau_{\mathrm{k}}, \tau_{\mathrm{k}}{ }^{*}\right)$ must be exactly the distinct η-suspension pairs of ($\mathrm{p}-1$)-simplices in $\tilde{\mathrm{X}}$. Because c is a (p-1)-cycle carried by $\operatorname{Susp}(\eta, \tilde{X})$, by Proposition $8 \mathrm{q}_{\#}$ (c) $=0$ and so by Proposition $7 \mathrm{c}\left(\tau_{\mathrm{i}}\right)=-\mathrm{c}\left(\tau_{\mathrm{i}}{ }^{*}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{k}$. Setting g_{i} $=\mathrm{c}\left(\tau_{\mathrm{i}}^{*}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{k}$ gives us $\mathrm{c}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left(\left[\mathrm{w}, \rho_{\mathrm{i}}\right]-\left[\mathrm{u}, \rho_{\mathrm{i}}\right]\right)$ because c is carried by the the $(\mathrm{p}-1)$-simplices of $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$. Because the suspension pairs $\left(\tau_{1}, \tau_{1}{ }^{*}\right),\left(\tau_{2}, \tau_{2}{ }^{*}\right),\left(\tau_{3}, \tau_{3}{ }^{*}\right), \ldots,\left(\tau_{\mathrm{k}}, \tau_{\mathrm{k}}{ }^{*}\right)$ are distinct $\mathrm{g}_{1}, \mathrm{~g}_{2}$, $\mathrm{g}_{3}, \ldots, \mathrm{~g}_{\mathrm{k}}$ are unique.
(ii) Because c is a cycle $0=\partial \mathrm{c}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left(\rho_{\mathrm{i}}-\left[\mathrm{w}, \partial \rho_{\mathrm{i}}\right]-\rho_{\mathrm{i}}+\left[\mathrm{u}, \partial \rho_{\mathrm{i}}\right]\right)$ $=\sum_{i=1}^{k} \mathrm{~g}_{\mathrm{i}}\left(\left[\mathrm{u}, \partial \rho_{\mathrm{i}}\right]-\left[\mathrm{w}, \partial \rho_{\mathrm{i}}\right]\right)$. Because w does not appear in $\left[\mathrm{u}, \partial \rho_{\mathrm{i}}\right]$ for any i, this implies $\sum_{i=1}^{k} \mathrm{~g}_{\mathrm{i}}\left[\mathrm{w}, \partial \rho_{\mathrm{i}}\right]=0$. By the definition of $\tilde{\mathrm{X}},\left[\mathrm{u}, \mathrm{w}, \rho_{\mathrm{i}}\right]$ is an oriented p-simplex of $\tilde{\mathrm{X}}$ for $1 \leq \mathrm{i} \leq \mathrm{k}$. Hence each oriented p -simplex appearing in the chain $\left[\mathrm{u}, \mathrm{w}, \partial \rho_{\mathrm{i}}\right]$ actually is in X . So $\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left[\mathrm{w}, \partial \rho_{\mathrm{i}}\right]=0$ implies $\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left[\mathrm{u}, \mathrm{w}, \partial \rho_{\mathrm{i}}\right]=0$.

Consider $b=\sum_{i=1}^{k} g_{i}\left[u, w, \rho_{i}\right]$. By the definition of \tilde{x}, as noted above, b is indeed a p-chain on \tilde{X} and is clearly carried by $\operatorname{St}(\eta, \tilde{X})$.
Furthermore $\partial \mathrm{b}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left(\left[\mathrm{w}, \rho_{\mathrm{i}}\right]-\left[\mathrm{u}, \rho_{\mathrm{i}}\right]+\left[\mathrm{u}, \mathrm{w}, \partial \rho_{\mathrm{i}}\right]\right)=\mathrm{c}+0=\mathrm{c}$.
Conversely, suppose that b is a p-chain carried by $\operatorname{St}(\eta, \tilde{\mathrm{X}})$ such that $\partial \mathrm{b}=\mathrm{c}$. Recall that the distinct p-simplices in $\operatorname{St}(\eta, \tilde{\mathrm{X}})$ are precisely $\eta * \rho_{1}, \eta * \rho_{2}, \eta * \rho_{3}, \cdots, \eta * \rho_{\mathrm{k}}$ by the definition of $\tilde{\mathrm{X}}$. Hence b $=\sum_{i=1}^{k} h_{i}\left[u, w, \rho_{i}\right]$ for some $h_{1}, h_{2}, h_{3}, \ldots, h_{k}$ in Γ. Then $\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left(\left[\mathrm{w}, \rho_{\mathrm{i}}\right]-\left[\mathrm{u}, \rho_{\mathrm{i}}\right]\right)=\mathrm{c}=\partial \mathrm{b}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{h}_{\mathrm{i}}\left(\left[\mathrm{w}, \rho_{\mathrm{i}}\right]-\left[\mathrm{u}, \rho_{\mathrm{i}}\right]+\left[\mathrm{u}, \mathrm{w}, \partial \rho_{\mathrm{i}}\right]\right)$. For 1 $\leq \mathrm{i} \leq \mathrm{k}$, because $\eta \cap \rho_{\mathrm{i}}=\emptyset$ neither of the terms [$\mathrm{w}, \rho_{\mathrm{i}}$] or [$\mathrm{u}, \rho_{\mathrm{i}}$] can be either orientation of any the terms containing both u and w. Then because $\rho_{1}, \rho_{2}, \rho_{3}, \ldots, \rho_{\mathrm{k}}$ are distinct we must have $\mathrm{g}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}}$ for 1 $\leq \mathrm{i} \leq \mathrm{k}$. Thus $\mathrm{b}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{g}_{\mathrm{i}}\left[\mathrm{u}, \mathrm{w}, \rho_{\mathrm{i}}\right] . \quad$ Q.E.D.

Proposition 10. Suppose c_{i} is a p-chain of $\tilde{\mathrm{X}}$ with coefficients in some abelian group Γ. If c_{i} is carried by $\operatorname{Ast}(\eta, \tilde{\mathrm{X}})$ and $\partial \mathrm{c}_{\mathrm{i}}$ is carried by
$\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$ then there is a unique chain b_{i} carried by $\operatorname{St}(\eta, \tilde{\mathrm{X}})$ such that $\partial \mathrm{b}_{\mathrm{i}}=\partial \mathrm{c}_{\mathrm{i}}$.

Proof. Because ∂c_{i} is a (p-1)-cycle, Proposition 10 directly follows from Proposition 9. Q.E.D.
5. The Difference Between $q\left(\operatorname{supp} \tilde{c}_{i}\right)$ and $\operatorname{supp} q_{\#}\left(\tilde{c}_{i}\right)$: the Proof of Proposition 13.

One technical problem we encounter is that a contraction, as used in Whiteley's theorem, is a simplicial map, while our category of minimal cycle complexes is defined by chains. Recall that one of the pieces into which we broke up the example complex in Chapter 3 is a tetrahedron, which q maps to a 2 -simplex while the chain map $q_{\#}$ maps to 0 . This is essentially the only difference between q and $q_{\#}$ and we show this in this chapter.

Suppose X is an abstract simplicial complex with a 1 -simple $\eta=\{\mathrm{u}, \mathrm{w}\}$, and let q be the labelling of $\mathrm{V}(\mathrm{X})$ contracting η to w . Lemma 11 simply says that if c is a p - chain of X then supp $q_{\#}(c)$ is always a subcomplex of $q(\operatorname{supp} c)$, and that if they differ by a p-simplex then this p-simplex must be part of a set of p-simplices which form a subchain of c that $q_{\#}$ collapses to 0 . We do not need the special properties of q to prove this: it is true of any simplicial map.

Lemma 11. (i) If c is a p -chain of X with coefficients in some abelian group Γ, then supp $\mathrm{q}_{\#}(\mathrm{c})$ is a subcomplex of $\mathrm{q}(\operatorname{supp} \mathrm{c})$, i.e. the support of the image under $\mathrm{q}_{\#}$ of the chain c is a subcomplex of the image under q of the support of c . Clearly both complexes are subcomplexes of $q(X)$.
(ii) If τ is a p - simplex in $\mathrm{q}(\operatorname{supp} \mathrm{c})$ that is not in $\operatorname{supp} \mathrm{q}_{\#}(\mathrm{c})$, and if S^{\prime} is the set of distinct p -simplices of supp c in $\mathrm{q}^{-1}(\tau)$, then there
are at least 2 distinct p -simplices in S^{\prime}, and for any orientation of τ and the elements of S^{\prime} such that $\mathrm{q}_{\#}(\sigma)=\tau$ whenever $\sigma \in \mathrm{S}^{\prime}$, we have that $\mathrm{c}(\sigma) \neq 0$ if $\sigma \in \mathrm{S}^{\prime}$ and that $\sum_{\sigma \in \mathrm{S}^{\prime}} \mathrm{c}(\sigma)=0$.

Proof. (i) Let $\rho \in \operatorname{supp} q_{\#}(c)$. Then ρ is a nonempty subset of some p-simplex τ in $\mathrm{q}(\mathrm{X})$ such that $\left(\mathrm{q}_{\#}(\mathrm{c})\right)(\tau) \neq 0$. Let T be the set of p- simplices of X in $q^{-1}(\tau)$. By Lemma 6 since $\left(q_{\#}(c)\right)(\tau) \neq 0$ we have that T is nonempty; furthermore, let us orient τ and the elements of T so that $\mathrm{q}_{\#}(\sigma)=\tau$ for each $\sigma \in \mathrm{T}$: then $\sum_{\sigma \in \mathrm{T}} \mathrm{c}(\sigma)=\left(\mathrm{q}_{\#}(\mathrm{c})\right)(\tau) \neq 0$. Hence there is an oriented p-simplex σ in X such that $\mathrm{q}_{\#}(\sigma)=\tau$ and $\mathrm{c}(\sigma) \neq 0$. Because $\mathrm{c}(\sigma) \neq 0$ we have $\sigma \in \operatorname{supp} \mathrm{c}$, implying $\tau \in \mathrm{q}(\operatorname{supp} \mathrm{c})$. Because $\mathrm{q}(\operatorname{supp} \mathrm{c})$ is an abstract simplicial complex and $\emptyset \neq \rho \subset \tau \in \mathrm{q}($ supp c$)$, we have $\rho \in q(\operatorname{supp} c)$. Thus $\operatorname{supp} q_{\#}(c) \subset q(\operatorname{supp} c)$.
(ii) Suppose that τ is a p-simplex in $q($ supp $c)$ that is not in supp $q_{\#}(c)$. By the definition of $q(\operatorname{supp} c)$ there is a simplex $\rho \in \operatorname{supp} c$ such that $\mathrm{q}(\rho)=\tau$. In fact there must be a p-simplex $\sigma \subset \rho$ such that $\mathrm{q}(\sigma)=\tau$. So S^{\prime} is nonempty. Clearly S^{\prime} is a subset of S , the set of p-simplices of X in $\mathrm{q}^{-1}(\tau)$. Orient τ and the elements of S so that $\mathrm{q}_{\#}(\sigma)$ $=\tau$ for each $\sigma \in \mathrm{S}$. By Lemma $6 \underset{\sigma \in \mathrm{~S}}{\sum_{\mathrm{S}}} \mathrm{c}(\sigma)=\left(\mathrm{q}_{\#}(\mathrm{c})\right)(\tau)$. Because τ is a p- simplex of $q(X)$ that is not in supp $q_{\#}(c)$ it follows that 0 $=\left(\mathrm{q}_{\#}(\mathrm{c})\right)(\tau)=\sum_{\sigma \in \mathrm{S}} \mathrm{c}(\sigma)$. If $\sigma \in \mathrm{S} \backslash S^{\prime}$ then σ is not in supp c , and so $\mathrm{c}(\sigma)$ $=0$. Hence $\sum_{\sigma \in S^{\prime}} c(\sigma)=0$. Finally, since the p-simplices in S^{\prime} are all in supp c it follows that c in nonzero on all of them. Because S^{\prime} is nonempty this forces it to contain at least 2 simplices. Q.E.D.

We will want to use the second part of Lemma 11 to show exactly how $q\left(\operatorname{supp} \tilde{c}_{i}\right)$ and $\operatorname{supp} q_{\#}\left(\tilde{c}_{i}\right)$ differ when \tilde{c}_{i} is one of the completed p-cycles which form the basis of our decomposition of a cycle complex. Hence we need to show that when c is a p-cycle and $q(\operatorname{supp} c)$ $\neq \operatorname{supp} q_{\#}(c)$, then $q\left(\operatorname{supp} \tilde{c}_{i}\right)$ and $\operatorname{supp} q_{\#}\left(\tilde{c}_{i}\right)$ do differ by a p-simplex. This does depend on the properties of q.

Lemma 12. Suppose that c is a p -cycle of X with coefficients in some abelian group Γ. If supp $\mathrm{q}_{\#}(\mathrm{c}) \neq \mathrm{q}(\operatorname{supp} \mathrm{c})$, then there is a p - simplex in $\mathrm{q}(\operatorname{supp} \mathrm{c})$ that is not in $\operatorname{supp} \mathrm{q}_{\#}(\mathrm{c})$.

Proof. If supp $q_{\#}(c) \neq q(\operatorname{supp} c)$, then by the first part of Lemma 11 there is some simplex τ which is in $q($ supp $c)$ but not in supp $q_{\#}(c)$. Because τ is in $q(\operatorname{supp} c)$ there is a simplex $\psi \in \operatorname{supp} c$ such that $\mathrm{q}(\psi)=\tau$. By the definition of supp c there must be a p - simplex $\pi \in \operatorname{supp} \mathrm{c} \subset \mathrm{X}$ such that π contains ψ and $\mathrm{c}(\pi) \neq 0$ when π is oriented. It is clear that because $\psi \subset \pi$ we have $\tau=\mathrm{q}(\psi) \subset \mathrm{q}(\pi)$, so because τ is not in supp $q_{\#}(c)$ neither is $q(\pi)$. Since $q(\pi)$ is in $q(\operatorname{supp} c)$, if it is a p-simplex we are done. Otherwise $\operatorname{dim} \mathrm{q}(\pi)<\mathrm{p}$ and hence π must be in $\operatorname{St}(\eta, \mathrm{X})$ (and p must be positive); we assume this for the remainder of the proof.

Orient π so that $\pi=[\mathrm{u}, \mathrm{w}, \rho]$ for some oriented ($\mathrm{p}-2$)-simplex ρ (if p $=1$ the argument for $\pi=[u, w]$ is similar to what follows). Consider the oriented ($\mathrm{p}-1$)-simplex $[\mathrm{w}, \rho]$. Let S be the set of p -simplices of X containing $[\mathrm{w}, \rho] . \mathrm{S}$ is nonempty because $\pi \in \mathrm{S}$. Hence if the elements of S are oriented so that $[\mathrm{w}, \rho]$ appears in $\partial \sigma$ with $\mathrm{a}+\operatorname{sign}$ for each $\sigma \in \mathrm{S}$, then $\partial \mathrm{c}([\mathrm{w}, \rho])=\sum_{\sigma \in \mathrm{S}} \mathrm{c}(\sigma)$. Because c is a cycle $0=\partial \mathrm{c}([\mathrm{w}, \rho])=\sum_{\sigma \in \mathrm{S}} \mathrm{c}(\sigma)$.

But $c(\pi) \neq 0$. Hence $[\mathrm{w}, \rho]$ also appears in $\partial \sigma$ with $\mathrm{a}+$ sign for some oriented p-simplex $\sigma \neq \pi$ such that $\mathrm{c}(\sigma) \neq 0$. Because $\mathrm{c}(\sigma) \neq 0$, $\sigma \in \operatorname{supp} \mathrm{c}$. Because $[\mathrm{w}, \rho]$ appears in $\partial \sigma$ with $\mathrm{a}+\operatorname{sign} \sigma$ can be written as $[\mathrm{v}, \mathrm{w}, \rho]$ for some vertex $\mathrm{v} \neq \mathrm{u}$.

Recall that $q(\pi)=\rho *\{w\}$ is not in supp $q_{\#}(c)$. Now $q(\sigma)$ $=\sigma \supset \mathrm{q}(\pi)$ so therefore σ also is in $\mathrm{q}($ supp c$)$ but not in supp $\mathrm{q}_{\#}(\mathrm{c})$. Because σ is a p-simplex we are done. Q.E.D.

We are now ready to prove Proposition 13.
Proposition 13. Let $\tilde{\mathrm{X}}$ be the completion of X over η for some $\mathrm{p} \geq 2$. Suppose that c_{i} is a p -chain on $\tilde{\mathrm{X}}$ with coefficients in some abelian group Γ and that c_{i} is carried by $\operatorname{Ast}(\eta, \tilde{\mathrm{X}})$ and that $\partial \mathrm{c}_{\mathrm{i}}$ is carried by $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$. If c_{i} is minimal modulo $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$, then
(i) the chain $\mathrm{q}_{\#}\left(\tilde{\mathrm{c}}_{\mathrm{i}}\right)$ is a minimal p -cycle on the complex $\mathrm{q}(\mathrm{X})$, and
(ii) either the complex $\mathrm{q}\left(\operatorname{supp} \tilde{\mathrm{c}}_{\mathrm{i}}\right)$ equals the support complex of $\mathrm{q}_{\#}\left(\tilde{\mathrm{c}}_{\mathrm{i}}\right)$ or else the support complex of $\tilde{\mathrm{c}}_{\mathrm{i}}$ is the simplex boundary complex $\dot{\Delta}\left(\mathrm{V}\left(\operatorname{supp} \tilde{\mathrm{c}}_{\mathrm{i}}\right)\right)$ on its own vertex set.

Proof. (i) $\partial\left(q_{\#}\left(\tilde{c}_{i}\right)\right)=q_{\#}\left(\partial \tilde{c}_{i}\right)=q_{\#}(0)=0$. To show that $q_{\#}\left(\tilde{c}_{i}\right)$ is minimal let s^{\prime} be a subcycle of $q_{\#}\left(\tilde{c}_{i}\right)$ and define a p - chain s on X by

$$
\mathrm{s}(\sigma)= \begin{cases}\tilde{\mathrm{c}}_{\mathrm{i}}(\sigma) & \text { if } \mathrm{q}_{\#}(\sigma) \neq 0 \text { and } \mathrm{s}^{\prime}\left(\mathrm{q}_{\#}(\sigma)\right) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

The proof that s is a subchain of \tilde{c}_{i} such that $q_{\#}(s)=s^{\prime}$ is straightforward.

Suppose σ is an oriented p-simplex in $\operatorname{St}(\eta, \tilde{\mathrm{X}})$. Then $\operatorname{dim} \mathrm{q}(\sigma)<\mathrm{p}$ so $\mathrm{q}_{\#}(\sigma)=0$. By definition $\mathrm{s}(\sigma)=0$. Thus s is carried by $\operatorname{Ast}(\eta, \tilde{X})$. Because \tilde{c}_{i} and c_{i} are identical on $\operatorname{Ast}(\eta, \tilde{x})$ it follows that s is a subchain of c_{i}.

We have $\mathrm{q}_{\#}(\partial \mathrm{~s})=\partial\left(\mathrm{q}_{\#}(\mathrm{~s})\right)=\partial \mathrm{s}^{\prime}=0$. Hence by Proposition 7, $\partial \mathrm{s}$ is trivial on $\operatorname{Asusp}(\eta, \tilde{\mathrm{X}})$, i.e. is carried by $\operatorname{St}(\eta, \tilde{\mathrm{X}}) \cup \operatorname{Susp}(\eta, \tilde{\mathrm{X}})$. But because s is carried by $\operatorname{Ast}(\eta, \tilde{\mathrm{X}})$, $\partial \mathrm{s}$ is carried by $\operatorname{Ast}(\eta, \tilde{\mathrm{X}})$. Therefore $\partial \mathrm{s}$ is carried by $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$.

Hence because c_{i} is minimal modulo $\operatorname{Susp}(\eta, \tilde{X})$ either $s=0$ or $s=c_{i}$. Clearly $s=0$ implies that $s^{\prime}=q_{\#}(s)=0$. If $s=c_{i}$ then $s^{\prime}=q_{\#}\left(c_{i}\right)$ $=q_{\#}\left(\tilde{c}_{i}\right)$. Hence $q_{\#}\left(\tilde{c}_{i}\right)$ is minimal.
(ii) Suppose that supp $q_{\#}\left(\tilde{c}_{i}\right) \neq q\left(\operatorname{supp} \tilde{c}_{i}\right)$. By Lemma 12 there is a p - $\operatorname{simplex} \tau$ in $\mathrm{q}\left(\operatorname{supp} \mathrm{c}_{\mathrm{i}}\right)$ that is not in $\operatorname{supp} \mathrm{q}_{\#}\left(\mathrm{c}_{\mathrm{i}}\right)$. Then by Lemma 11 , if S^{\prime} is the set of distinct p - simplices of $\operatorname{supp} \tilde{\mathrm{c}}_{\mathrm{i}}$ in $\mathrm{q}^{-1}(\tau)$, then there are at least 2 distinct p -simplices in S^{\prime}, and for any orientation of τ and the elements of S^{\prime} such that $\mathrm{q}_{\#}(\sigma)=\tau$ whenever $\sigma \in \mathrm{S}^{\prime}$, we have that $\mathrm{c}_{\mathbf{i}}(\sigma) \neq 0$ if $\sigma \in \mathrm{S}^{\prime}$ and that $\sum_{\sigma \in \mathrm{S}^{\prime}} \mathrm{c}_{\mathbf{i}}(\sigma)=0$. If $\sigma \in \mathrm{S}^{\prime}$ the dimension of σ does not decrease under the contraction q so σ must be in $\operatorname{Ast}(\eta, \tilde{\mathrm{X}})$; furthermore, because there are at least 2 distinct p-simplices in $\mathrm{q}^{-1}(\mathrm{q}(\sigma)), \sigma$ cannot be in $\operatorname{Asusp}(\eta, \tilde{\mathrm{X}})$: thus σ must be in $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$ and so the p-simplices in $\mathrm{q}^{-1}(\mathrm{q}(\sigma))$ must be exactly σ and σ^{*}. Hence $\mathrm{w} \in \tau$.

Orient τ. We defined p-complete only when $\mathrm{p} \geq 2$, so there is an oriented (p-1)-simplex ρ such that $\tau=[\mathrm{w}, \rho]$. Then $\left\{\sigma, \sigma^{*}\right\}=\{[\mathrm{u}, \rho],[\mathrm{w}, \rho]\}$.

Without loss of generality let $\sigma=[\mathrm{w}, \rho]$ and $\sigma^{*}=[\mathrm{u}, \rho]$. Let g $=\mathrm{c}_{\mathrm{i}}(\sigma)$ and $\mathrm{g}^{*}=\mathrm{c}_{\mathrm{i}}\left(\sigma^{*}\right)$. Recall that $\mathrm{c}_{\mathrm{i}}(\sigma)+\mathrm{c}_{\mathrm{i}}\left(\sigma^{*}\right)=0$ so that $\mathrm{g}^{*}=-\mathrm{g}$. We have that $\mathrm{g} \sigma+\mathrm{g}^{*} \sigma^{*}$ is a subchain of c_{i} and that $\partial\left(\mathrm{g} \sigma+\mathrm{g}^{*} \sigma^{*}\right)$
$=\partial\left(\mathrm{g} \sigma-\mathrm{g} \sigma^{*}\right)=\mathrm{g}(\rho-[\mathrm{w}, \partial \rho]-\rho+[\mathrm{u}, \partial \rho])=\mathrm{g}([\mathrm{u}, \partial \rho]-[\mathrm{w}, \partial \rho])$, which is carried by $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$. By hypothesis c_{i} is minimal modulo $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$ and so $c_{i}=g \sigma+g^{*} \sigma^{*}$.

By Proposition 9 the unique p-chain b carried by $\operatorname{St}(\eta, \tilde{\mathrm{X}})$ such that $\partial \mathrm{b}=\partial \mathrm{c}_{\mathrm{i}}$ is $\mathrm{b}=-\mathrm{g}[\mathrm{u}, \mathrm{w}, \partial \rho]$. Hence $\tilde{\mathrm{c}}_{\mathrm{i}}=\mathrm{g}([\mathrm{w}, \rho]-[\mathrm{u}, \rho]-[\mathrm{u}, \mathrm{w}, \partial \rho])$ $=\mathrm{g} \partial[\mathrm{u}, \mathrm{w}, \rho]$. Because $\pi \in \operatorname{supp} \tilde{\mathrm{c}}_{\mathrm{i}}$ if and only if π is a nonempty proper subset of $\{u, w\} * \rho=V\left(\operatorname{supp} \tilde{c}_{i}\right)$ we have $\operatorname{supp} \tilde{c}_{i}=\dot{\Delta}\left(V\left(\operatorname{supp} \tilde{c}_{i}\right)\right)$. Q.E.D.

6. The Proofs of Propositions 14 and 15.

Proposition 14. If a graph G has a vertex covering subgraph family of generically d-rigid subgraphs that is vertex connected with multiplicity d then G is generically d - rigid.

Proof. Suppose that G has a vertex covering subgraph family F of generically d-rigid subgraphs that is vertex connected with multiplicity d. Let $\mathrm{k}=|\mathrm{F}|$. Choose any subgraph in F and call it G_{1}. Set $\mathrm{A}_{1}=\left\{\mathrm{G}_{1}\right\}$ and $B_{1}=F \backslash A_{1}$. Note that $\left|A_{1}\right|=1$ and that $\underset{H \in A_{1}}{U} H=G_{1}$ is generically d-rigid by hypothesis. We proceed recursively as follows:

Whenever $1 \leq \mathrm{i} \leq \mathrm{k}$ suppose that $\left\{\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}\right\}$ is a bipartition of F such that $\left|A_{i}\right|=i$ and $\underset{H \in A_{i}}{U} H$ is a generically d-rigid subgraph of G. Because F is vertex connected with multiplicity d there is a graph $G_{i+1} \in B_{i}$ with d vertices in common with some graph in A_{i} and so with $\underset{H \in A_{i}}{U} H$. By hypothesis $\mathrm{G}_{\mathrm{i}+1}$ is generically d-rigid and so by Proposition 3 $\left(\underset{H \in A_{i}}{\cup} H\right) \cup G_{i+1}$ is generically d-rigid. Hence if we let A_{i+1}
$=A_{i} \cup\left\{G_{i+1}\right\}$ and $B_{i+1}=F \backslash A_{i+1}$ we have that that $\left\{A_{i+1}, B_{i+1}\right\}$ is a bipartition of F (unless $i+1=k$) such that $\left|A_{i+1}\right|=i+1$ and $\underset{H \in A_{i+1}}{U} H$ is a generically d-rigid subgraph of G.

We conclude that $A_{k}=F$ and that $\underset{H \in F}{U} H$ is a generically d-rigid subgraph of G. Because F is vertex covering $\underset{H \in F}{U H}$ spans G. Thus by Proposition 2, G is generically d-rigid. Q.E.D.

Proposition 15. Let X be an abstract simplicial complex with $\{\mathrm{u}, \mathrm{w}\}$ $=\eta \in \mathrm{S}^{1}(\mathrm{X})$. For some $\mathrm{p} \geq 2$, let c be a p - cycle on X with coefficients in some abelian group Γ, let c^{\prime} be the restriction of c to $\operatorname{Ast}(\eta, \mathrm{X})$, and let $\tilde{\mathrm{X}}$ be the p -completion of X over η. If $\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}$ is a decomposition of c^{\prime} modulo $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$, then $\sum_{\mathrm{i}=1}^{\mathrm{k}} \tilde{\mathrm{c}}_{\mathrm{i}}=\mathrm{c}$, where $\tilde{\mathrm{c}}_{\mathrm{i}}$ is the completion of c_{i} over η for $1 \leq \mathrm{i} \leq \mathrm{k}$. If, in addition, c is minimal and G_{i} denotes the 1 -skeleton of supp $\tilde{\mathrm{c}}_{\mathrm{i}}$ for $1 \leq \mathrm{i} \leq \mathrm{k}$, then $\left\{\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \ldots, \mathrm{G}_{\mathrm{k}}\right\}$ is a vertex covering subgraph family of ${\underset{\mathrm{i}}{\mathrm{U}} \mathrm{U}}_{\mathrm{k}}^{\mathrm{G}} \mathrm{G}_{\mathrm{i}}$ that is vertex connected with multiplicity $\mathrm{p}+1$.

Proof. The cycle $\sum_{i=1}^{k} \tilde{c}_{i}$ equals the sum of the chain $\sum_{i=1}^{k} c_{i}=c^{\prime}$ and some chain carried by $\operatorname{St}(\eta, \tilde{\mathrm{X}})$. Because the completion of c^{\prime} over η is unique, $\sum_{i=1}^{k} \tilde{c}_{i}=c$.

If, in addition, c is minimal, let $\{\mathrm{A}, \mathrm{B}\}$ be a bipartition of $\{1,2,3, \ldots, k\}$. Hence both A and B are nonempty. Thus we have that 0 $\neq \sum_{i \in A} c_{i} \neq c^{\prime}$ and $0 \neq \sum_{i \in B} c_{i} \neq c^{\prime}$. It follows that $0 \neq \sum_{i \in A} \tilde{c}_{i} \neq c$ and 0 $\neq \sum_{i \in B} \tilde{c}_{i} \neq c$. Because c is minimal $\sum_{i \in A} \tilde{c}_{i}$ cannot be a subcycle of c. Hence there is a p-simplex σ such that $0 \neq\left(\sum_{i \in A} \tilde{\mathrm{c}}_{\mathrm{i}}\right)(\sigma) \neq \mathrm{c}(\sigma)$. Because $\sum_{i=1}^{k} \tilde{c}_{i}=c$ we have $0 \neq\left(\sum_{i \in B} \tilde{c}_{i}\right)(\sigma)$ also. Thus for some indices a in A and b in B we have $\tilde{\mathrm{c}}_{\mathrm{a}}(\sigma)$ and $\tilde{\mathrm{c}}_{\mathrm{b}}(\sigma)$ to be nontrivial. Because both supp $\tilde{\mathrm{c}}_{\mathrm{a}}$
and supp \tilde{c}_{b} contain the p - $\operatorname{simplex} \sigma, \mathrm{V}\left(\mathrm{G}_{\mathrm{a}}\right)$ and $\mathrm{V}\left(\mathrm{G}_{\mathrm{b}}\right)$ have at least $\mathrm{p}+1$ common elements. Clearly then $\left\{\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \ldots, \mathrm{G}_{\mathrm{k}}\right\}$ is a vertex covering subgraph family of $\bigcup_{i=1}^{k} G_{i}$ that is vertex connected with multiplicity $p+1$. Q.E.D.
7. The Proof of the Result.

Theorem. The 1-skeleton of a minimal (d-1)-cycle complex, $\mathrm{d} \geq 3$, is generically d-rigid.

Proof. We use induction on the number of vertices in the complex. Recall we noted that if $\mathrm{d}-1>0$, all (d-1)-cycle complexes have at least $d+1$ vertices; furthermore there are minimal ($\mathrm{d}-1$)-cycle complexes with only $\mathrm{d}+1$ vertices, and the 1 -skeletons of these complexes are complete graphs, which are generically d-rigid by Proposition 1.

Suppose X is a minimal ($\mathrm{d}-1$)-cycle complex with more than $\mathrm{d}+1$ vertices and assume that the 1 -skeleton of any minimal ($\mathrm{d}-1$)-cycle complex with fewer vertices than X is generically d-rigid. Let c be a minimal (d-1)-cycle on X with coefficients in some abelian group Γ such that $\operatorname{supp} c=X . \quad$ Let $\{u, w\}=\eta$ be any 1 -simplex of X. Because $d-1 \geq 2$ we can form the ($\mathrm{d}-1$)-completion of X over η, which we denote by $\tilde{\mathrm{X}}$. Let c^{\prime} be the restriction of c to $\operatorname{Ast}(\eta, \tilde{\mathrm{X}})$. It follows that $\partial \mathrm{c}^{\prime}$ is carried by $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$. Recall that c cannot be carried by $\operatorname{St}(\eta, \operatorname{Supp} \mathrm{c})=\operatorname{St}(\eta, \mathrm{X})$, so c^{\prime} is nontrivial. Hence there is a maximal decomposition $\mathrm{D}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}$ of $\mathrm{c}^{\prime} \operatorname{modulo} \operatorname{Susp}(\eta, \tilde{\mathrm{X}})$.

Let $1 \leq \mathrm{i} \leq \mathrm{k}$. By the definition of D we know that c_{i} is a (d-1)-chain carried by $\operatorname{Ast}(\eta, \tilde{X})$ and that $\partial \mathrm{c}_{\mathrm{i}}$ is carried by $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$. By Proposition 10 the unique completion of c_{i} over η exists and we denote it by $\tilde{\mathrm{c}}_{\mathrm{i}}$. Let q be the labelling of $\mathrm{V}(\mathrm{X})=\mathrm{V}(\tilde{\mathrm{X}})$ contracting η to w . Recall that c cannot be carried by $\operatorname{Ast}(\eta, \operatorname{supp} \mathrm{c})=\operatorname{Ast}(\eta, \mathrm{X})$, so c^{\prime} is a proper
subchain of c, and c_{i} is a nontrivial proper subchain of c. Since c is a minimal cycle, c_{i} is not a cycle; recall that therefore η is a member of the support complex of the completion of c_{i} over η, i.e. $\eta \in \operatorname{supp} \tilde{c}_{\mathrm{i}}$. Thus q does contract an edge of supp \tilde{c}_{i}. Because D is maximal c_{i} is minimal modulo $\operatorname{Susp}(\eta, \tilde{\mathrm{X}})$ and hence by Proposition $13 \mathrm{q}_{\#}\left(\tilde{c}_{i}\right)$ is a minimal $(d-1)$ - cycle on $q(X)$ and either $\operatorname{supp} q_{\#}\left(\tilde{c}_{i}\right)=q\left(\operatorname{supp} \tilde{c}_{i}\right)$ or supp \tilde{c}_{i} $=\dot{\Delta}\left(\mathrm{V}\left(\operatorname{supp} \tilde{c}_{i}\right)\right.$, the simplex boundary complex on its own vertex set.

Let G_{i} be the 1 -skeleton of $\operatorname{supp} \tilde{c}_{i}$. Then the 1 -skeleton of $q\left(\operatorname{supp} \tilde{c}_{i}\right)$ is $q\left(G_{i}\right)$. If $q\left(\operatorname{supp} \tilde{c}_{i}\right)=\operatorname{supp} q_{\#}\left(\tilde{c}_{i}\right)$ then $q\left(\operatorname{supp} \tilde{c}_{i}\right)$ is a minimal (d-1)-cycle complex without the vertex u and so by the induction hypothesis $q_{i}\left(G_{i}\right)$ is generically d-rigid. Because supp \tilde{c}_{i} is a (d-1)-cycle complex, η is an edge of at least 2 distinct (d-1)-simplices of $\operatorname{supp} \tilde{c}_{i}$; thus η is an edge in at least $d-1$ distinct triangles of G_{i}. Thus by Theorem 4 the generic d-rigidity of $q\left(G_{i}\right)$ implies the generic d-rigidity of G_{i}. On the other hand, if $\operatorname{supp} \tilde{c}_{i}=\dot{\Delta}\left(V\left(\operatorname{supp} \tilde{c}_{i}\right)\right)$ then because $\mathrm{d}-1>0, \mathrm{G}_{\mathrm{i}}$ is a complete graph and so generically d-rigid.

By Proposition $15 \sum_{i=1}^{k} \tilde{c}_{i}=c$; hence clearly $X=\operatorname{supp} c c \bigcup_{i=1}^{k} \operatorname{supp} \tilde{c}_{i}$.
Thus $X^{1} \subset \bigcup_{i=1}^{k} G_{i} \subset \tilde{X}^{1}$. But $X^{1}=\tilde{X}^{1}$ so $X^{1}=\bigcup_{i=1}^{k} G_{i}$. Furthermore, because c is minimal, by Proposition $15\left\{\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \ldots, \mathrm{G}_{\mathrm{k}}\right\}$ is a vertex covering subgraph family of $\bigcup_{i=1}^{k} G_{i}=X^{1}$ that is vertex connected with multiplicity d. Thus because G_{i} is generically d-rigid for $1 \leq i \leq k$, by Proposition $14, \mathrm{X}^{1}$ is generically d-rigid also.

The theorem follows by induction. Q.E.D.

