4. Chains and Contractions: the Proof of Proposition 10.

To prove Proposition 10 we need some facts about particular chains under contractions.

Suppose X is an abstract simplicial complex, $\{u,w\} = \eta \in S^1(X)$, and q is the labelling of V(X) contracting η to w. We say an η -suspension pair (τ, τ^*) is <u>coherently oriented</u> if $q_{\#}(\tau) = q_{\#}(\tau^*)$. The simplices τ and τ^* are coherently oriented if and only if the set of oriented simplices $\{\tau, \tau^*\}$ equals one of the following: (i) $\{[u], [w]\};$ (ii) $\{[v,u], [v,w]\}$ for some $v \in V(X) \setminus \eta$; or (iii) $\{[u, \tau_e], [w, \tau_e]\}$ for some orientation of τ_e .

<u>Proposition 7</u>. Suppose that c is a p-chain of X with coefficients in some abelian group Γ . Then $c \in \text{Ker } q_{\#}$ if and only if

(i) $c(\tau) = 0$ if τ is an oriented p-simplex of $Asusp(\eta; X)$, and

(ii) $c(\tau) + c(\tau^*) = 0$ if (τ, τ^*) is a coherently oriented η -suspension pair of p-simplices.

Proof. Suppose $c \in \text{Ker } q_{\#}$. Let τ be an unoriented p-simplex in Asusp (η, X) . Consider $\pi = q(\tau)$. dim $\pi = \dim \tau$ and $q^{-1}(\pi) = \{\tau\}$. Suppose τ is oriented and orient π so that $q_{\#}(\tau) = \pi$. Because $c \in \text{Ker } q_{\#}$, $0 = (q_{\#}(c))(\pi) = c(\tau)$, by Lemma 6.

Let (τ, τ^*) be a coherently oriented η -suspension pair of p-simplices of X. Consider $\pi = q(\tau) = q(\tau^*)$. Now $q^{-1}(\pi) \in \{\tau, \tau^*, \tau * \tau^*\}$ and $p = \dim \pi$ = dim τ = dim τ^* , but dim $(\tau * \tau^*) = p+1$. We can orient π so that $q_{\#}(\tau)$ = π . Then because τ and τ^* are coherently oriented $q_{\#}(\tau^*) = \pi$. Because dim $(\tau * \tau^*) \neq p$, by Lemma 6, $c(\tau) + c(\tau^*) = (q_{\#}(c))(\pi)$, which is 0 since $c \in \text{Ker } q_{\#}$.

Conversely, suppose c satisfies conditions (i) and (ii). Let π be an oriented p-simplex in q(X). Recall that there must be a p-simplex $\tau \in X$ such that $q(\tau) = \pi$. Orient τ so that $q_{\#}(\tau) = \pi$. If $\tau \in Asusp(\eta, X)$ then $q^{-1}(\pi) = \{\tau\}$ and so by Lemma 6 $(q_{\#}(c))(\pi) = c(\tau) = 0$. If $\tau \in Susp(\eta, X)$ then $q^{-1}(\pi) \subset \{\tau, \tau^*, \tau * \tau^*\}$ and $q(\tau^*) = \pi$; because dim $\tau = p$ $= \dim \tau^*$ and dim $(\tau * \tau^*) \neq p$, by Lemma 6 $(q_{\#}(c))(\pi) = c(\tau) + c(\tau^*)$ if τ^* is also oriented so that $q_{\#}(\tau^*) = \pi$. In this case τ and τ^* are coherently oriented and so $(q_{\#}(c))(\pi) = c(\tau) + c(\tau^*) = 0$. Finally, if $\tau \in St(\eta, X)$ then dim $\pi = \dim \tau - 1$, contradicting our choice of τ . Hence for any oriented p-simplex π in q(X) we have $(q_{\#}(c))(\pi) = 0$. Thus $q_{\#}(c)$ = 0. Q.E.D.

<u>Proposition 8</u>. For p > 0 suppose that c is a p-cycle of X with coefficients in some abelian group Γ . If c is carried by $St(\eta, X) \cup Susp(\eta, X)$, then $q_{\sharp}(c) = 0$.

Proof. Suppose τ is an oriented p-simplex of Asusp (η, X) . Because c is carried by St $(\eta, X) \cup$ Susp (η, X) we have $c(\tau) = 0$.

Suppose τ is an oriented p-simplex in Susp (η, X) . Orient τ^* so that τ and τ^* are coherently oriented. Because p > 0, $\{\tau, \tau^*\} \neq \{[u], [w]\}$.

If $\{\tau, \tau^*\} = \{[u, \tau_e], [w, \tau_e]\}$ for some orientation of τ_e , then consider $\partial c(\tau_e)$. τ_e appears in $\partial [u, \tau_e]$ and $\partial [w, \tau_e]$ with + signs. Any other unoriented p-simplex ρ containing τ_e contains neither u nor w and so is not in $St(\eta, X) \cup Susp(\eta, X)$; hence for either orientation of ρ , $c(\rho)$ = 0 by hypothesis. So by Lemma 5 $\partial c(\tau_e) = c([u, \tau_e]) + c([w, \tau_e])$. Because c is a cycle we have $0 = c(\tau) + c(\tau^*)$. Otherwise $\{\tau, \tau^*\} = \{[v, u], [v, w]\}$ for some $v \in V(X) \setminus \eta$ and so $\tau_e = [v]$. By an argument similar to that used above we still have 0 = $c(\tau) + c(\tau^*)$.

Thus $c \in Ker q_{\#}$ by Proposition 7. Q.E.D.

<u>Proposition 9</u>. Let \tilde{X} be the p-completion of X over η . Suppose that c is a (p-1)-cycle of \tilde{X} with coefficients in some abelian group Γ , and that c is carried by $Susp(\eta, \tilde{X})$.

(i) If ρ_1 , ρ_2 , ρ_3 , . . . , ρ_k are the distinct (p-2)-simplices in Eq(η, \tilde{X}), arbitrarily oriented, then there exist unique g_1 , g_2 , k

 g_3, \ldots, g_k in Γ such that $c = \sum_{i=1}^k g_i([w,\rho_i] - [u,\rho_i]).$

(ii) There is a unique p-chain b carried by $St(\eta, \tilde{X})$ such that $\partial b = c$. It is $b = \sum_{i=1}^{k} g_i[u, w, \rho_i]$.

Proof. (i) For $1 \leq i \leq k$, because $\rho_i \in Eq(\eta, \tilde{X})$ we have that the pair of oriented (p-1)-simplices $\tau_i = [u, \rho_i]$ and $\tau_i^* = [w, \rho_i]$ is a coherently oriented η -suspension pair. By the definition of the suspension of η in \tilde{X} , (τ_1, τ_1^*) , (τ_2, τ_2^*) , (τ_3, τ_3^*) , . . . , (τ_k, τ_k^*) must be exactly the distinct η -suspension pairs of (p-1)-simplices in \tilde{X} . Because c is a (p-1)-cycle carried by $Susp(\eta, \tilde{X})$, by Proposition 8 $q_{\#}(c) = 0$ and so by Proposition 7 $c(\tau_i) = -c(\tau_i^*)$ for $1 \leq i \leq k$. Setting $g_i = c(\tau_i^*)$ for $1 \leq i \leq k$ gives us $c = \sum_{i=1}^{k} g_i([w, \rho_i] - [u, \rho_i])$ because c is carried by the the (p-1)-simplices of $Susp(\eta, \tilde{X})$. Because the suspension pairs (τ_1, τ_1^*) , (τ_2, τ_2^*) , (τ_3, τ_3^*) , . . . , (τ_k, τ_k^*) are distinct $g_1, g_2, g_3, \ldots, g_k$ are unique.

(ii) Because c is a cycle 0 = $\partial c = \sum_{i=1}^{k} g_i(\rho_i - [w, \partial \rho_i] - \rho_i + [u, \partial \rho_i])$ $= \sum_{i=1}^{k} g_{i}([u,\partial\rho_{i}]-[w,\partial\rho_{i}]).$ Because w does not appear in $[u,\partial\rho_{i}]$ for any i, this implies $\sum_{i=1}^{K} g_i[w, \partial \rho_i] = 0$. By the definition of \tilde{X} , $[u, w, \rho_i]$ is an oriented p-simplex of \tilde{X} for $1 \leq i \leq k$. Hence each oriented p-simplex appearing in the chain $[u, w, \partial \rho_i]$ actually is in X. So $\sum_{i=1}^{K} g_i[w, \partial \rho_i] = 0$ implies $\sum_{i=1}^{\kappa} g_i[u,w,\partial \rho_i] = 0.$ Consider b = $\sum_{i=1}^{K} g_i[u, w, \rho_i]$. By the definition of \tilde{X} , as noted above, b is indeed a p-chain on \tilde{X} and is clearly carried by $\operatorname{St}(\eta, \tilde{X})$. Furthermore $\partial b = \sum_{i=1}^{K} g_i([w,\rho_i] - [u,\rho_i] + [u,w,\partial\rho_i]) = c + 0 = c.$ Conversely, suppose that b is a p-chain carried by $St(\eta, \tilde{X})$ such that $\partial b = c$. Recall that the distinct p-simplices in $St(\eta, \tilde{X})$ are precisely $\eta * \rho_1, \ \eta * \rho_2, \ \eta * \rho_3, \ \dots, \ \eta * \rho_k$ by the definition of \tilde{X} . Hence b = $\sum_{i=1}^{K} h_i[u,w,\rho_i]$ for some $h_1, h_2, h_3, \ldots, h_k$ in Γ . Then $\sum_{i=1}^{k} g_i([w,\rho_i] - [u,\rho_i]) = c = \partial b = \sum_{i=1}^{k} h_i([w,\rho_i] - [u,\rho_i] + [u,w,\partial\rho_i]).$ For 1 $\leq i \leq k$, because $\eta \cap \rho_i = \emptyset$ neither of the terms $[w, \rho_i]$ or $[u, \rho_i]$ can be either orientation of any the terms containing both u and w. Then because ρ_1 , ρ_2 , ρ_3 , . . . , ρ_k are distinct we must have $g_i = h_i$ for 1 $\leq i \leq k$. Thus $b = \sum_{i=1}^{K} g_i[u,w,\rho_i]$. Q.E.D.

<u>Proposition 10</u>. Suppose c_i is a p-chain of \tilde{X} with coefficients in some abelian group Γ . If c_i is carried by $Ast(\eta, \tilde{X})$ and ∂c_i is carried by

$$\begin{split} &\operatorname{Susp}(\eta,\tilde{X}) \text{ then there is a unique chain } b_i \text{ carried by } \operatorname{St}(\eta,\tilde{X}) \text{ such that} \\ &\partial b_i = \partial c_i. \end{split}$$

Proof. Because ∂c_i is a (p-1)-cycle, Proposition 10 directly follows from Proposition 9. Q.E.D.

5. The Difference Between q(supp \tilde{c}_i) and supp $q_{\#}(\tilde{c}_i)$: the Proof of Proposition 13.

One technical problem we encounter is that a contraction, as used in Whiteley's theorem, is a simplicial map, while our category of minimal cycle complexes is defined by chains. Recall that one of the pieces into which we broke up the example complex in Chapter 3 is a tetrahedron, which q maps to a 2-simplex while the chain map $q_{\#}$ maps to 0. This is essentially the only difference between q and $q_{\#}$ and we show this in this chapter.

Suppose X is an abstract simplicial complex with a 1-simple $\eta = \{u, w\}$, and let q be the labelling of V(X) contracting η to w. Lemma 11 simply says that if c is a p-chain of X then supp $q_{\#}(c)$ is always a subcomplex of q(supp c), and that if they differ by a p-simplex then this p-simplex must be part of a set of p-simplices which form a subchain of c that $q_{\#}$ collapses to 0. We do not need the special properties of q to prove this: it is true of any simplicial map.

Lemma 11. (i) If c is a p-chain of X with coefficients in some abelian group Γ , then supp $q_{\#}(c)$ is a subcomplex of q(supp c), i.e. the support of the image under $q_{\#}$ of the chain c is a subcomplex of the image under q of the support of c. Clearly both complexes are subcomplexes of q(X).

(ii) If τ is a p-simplex in q(supp c) that is not in supp $q_{\#}(c)$, and if S' is the set of distinct p-simplices of supp c in $q^{-1}(\tau)$, then there

are at least 2 distinct p-simplices in S', and for any orientation of τ and the elements of S' such that $q_{\#}(\sigma) = \tau$ whenever $\sigma \in S'$, we have that $c(\sigma) \neq 0$ if $\sigma \in S'$ and that $\sum_{\sigma \in S'} c(\sigma) = 0$.

Proof. (i) Let $\rho \in \text{supp } q_{\#}(c)$. Then ρ is a nonempty subset of some p-simplex τ in q(X) such that $(q_{\#}(c))(\tau) \neq 0$. Let T be the set of p-simplices of X in $q^{-1}(\tau)$. By Lemma 6 since $(q_{\#}(c))(\tau) \neq 0$ we have that T is nonempty; furthermore, let us orient τ and the elements of T so that $q_{\#}(\sigma) = \tau$ for each $\sigma \in T$: then $\sum_{\sigma \in T} c(\sigma) = (q_{\#}(c))(\tau) \neq 0$. Hence there is an oriented p-simplex σ in X such that $q_{\#}(\sigma) = \tau$ and $c(\sigma) \neq 0$. Because $c(\sigma) \neq 0$ we have $\sigma \in \text{supp } c$, implying $\tau \in q(\text{supp } c)$. Because q(supp c) is an abstract simplicial complex and $\emptyset \neq \rho \subset \tau \in q(\text{supp } c)$, we have $\rho \in q(\text{supp } c)$.

(ii) Suppose that τ is a p-simplex in q(supp c) that is not in supp $q_{\#}(c)$. By the definition of q(supp c) there is a simplex $\rho \in$ supp c such that $q(\rho) = \tau$. In fact there must be a p-simplex $\sigma \in \rho$ such that $q(\sigma) = \tau$. So S' is nonempty. Clearly S' is a subset of S, the set of p-simplices of X in $q^{-1}(\tau)$. Orient τ and the elements of S so that $q_{\#}(\sigma)$ $= \tau$ for each $\sigma \in S$. By Lemma 6 $\sum_{\sigma \in S} c(\sigma) = (q_{\#}(c))(\tau)$. Because τ is a p-simplex of q(X) that is not in supp $q_{\#}(c)$ it follows that 0 $= (q_{\#}(c))(\tau) = \sum_{\sigma \in S} c(\sigma)$. If $\sigma \in S \setminus S'$ then σ is not in supp c, and so $c(\sigma)$ = 0. Hence $\sum_{\sigma \in S} c(\sigma) = 0$. Finally, since the p-simplices in S' are all in supp c it follows that c in nonzero on all of them. Because S' is nonempty this forces it to contain at least 2 simplices. Q.E.D. We will want to use the second part of Lemma 11 to show exactly how $q(\operatorname{supp} \tilde{c}_i)$ and $\operatorname{supp} q_{\#}(\tilde{c}_i)$ differ when \tilde{c}_i is one of the completed p-cycles which form the basis of our decomposition of a cycle complex. Hence we need to show that when c is a p-cycle and $q(\operatorname{supp} c)$ \neq supp $q_{\#}(c)$, then $q(\operatorname{supp} \tilde{c}_i)$ and supp $q_{\#}(\tilde{c}_i)$ do differ by a p-simplex. This does depend on the properties of q.

<u>Lemma</u> 12. Suppose that c is a p-cycle of X with coefficients in some abelian group Γ . If supp $q_{\#}(c) \neq q(\text{supp c})$, then there is a p-simplex in q(supp c) that is not in supp $q_{\#}(c)$.

Proof. If $\operatorname{supp} q_{\#}(c) \neq q(\operatorname{supp} c)$, then by the first part of Lemma 11 there is some simplex τ which is in $q(\operatorname{supp} c)$ but not in $\operatorname{supp} q_{\#}(c)$. Because τ is in $q(\operatorname{supp} c)$ there is a simplex $\psi \in \operatorname{supp} c$ such that $q(\psi) = \tau$. By the definition of supp c there must be a p-simplex $\pi \in \operatorname{supp} c \subset X$ such that π contains ψ and $c(\pi) \neq 0$ when π is oriented. It is clear that because $\psi \subset \pi$ we have $\tau = q(\psi) \subset q(\pi)$, so because τ is not in supp $q_{\#}(c)$ neither is $q(\pi)$. Since $q(\pi)$ is in $q(\operatorname{supp} c)$, if it is a p-simplex we are done. Otherwise dim $q(\pi) < p$ and hence π must be in $\operatorname{St}(\eta, X)$ (and p must be positive); we assume this for the remainder of the proof.

Orient π so that $\pi = [u, w, \rho]$ for some oriented (p-2)-simplex ρ (if p = 1 the argument for $\pi = [u, w]$ is similar to what follows). Consider the oriented (p-1)-simplex $[w, \rho]$. Let S be the set of p-simplices of X containing $[w, \rho]$. S is nonempty because $\pi \in S$. Hence if the elements of S are oriented so that $[w, \rho]$ appears in $\partial \sigma$ with a + sign for each $\sigma \in S$, then $\partial c([w, \rho]) = \sum_{\sigma \in S} c(\sigma)$. Because c is a cycle $0 = \partial c([w, \rho]) = \sum_{\sigma \in S} c(\sigma)$. But $c(\pi) \neq 0$. Hence $[w,\rho]$ also appears in $\partial \sigma$ with a + sign for some oriented p-simplex $\sigma \neq \pi$ such that $c(\sigma) \neq 0$. Because $c(\sigma) \neq 0$, $\sigma \in \text{supp c.}$ Because $[w,\rho]$ appears in $\partial \sigma$ with a + sign σ can be written as $[v,w,\rho]$ for some vertex $v \neq u$.

Recall that $q(\pi) = \rho * \{w\}$ is not in supp $q_{\#}(c)$. Now $q(\sigma) = \sigma \supset q(\pi)$ so therefore σ also is in q(supp c) but not in supp $q_{\#}(c)$. Because σ is a p-simplex we are done. Q.E.D.

We are now ready to prove Proposition 13.

<u>Proposition 13</u>. Let \tilde{X} be the completion of X over η for some $p \ge 2$. Suppose that c_i is a p-chain on \tilde{X} with coefficients in some abelian group Γ and that c_i is carried by $Ast(\eta, \tilde{X})$ and that ∂c_i is carried by $Susp(\eta, \tilde{X})$. If c_i is minimal modulo $Susp(\eta, \tilde{X})$, then

(i) the chain $q_{\#}(\tilde{c}_{i})$ is a minimal p-cycle on the complex q(X), and

(ii) either the complex $q(\text{supp } \tilde{c}_i)$ equals the support complex of $q_{\#}(\tilde{c}_i)$ or else the support complex of \tilde{c}_i is the simplex boundary complex $\dot{\Delta}(V(\text{supp } \tilde{c}_i))$ on its own vertex set.

Proof. (i) $\partial(q_{\#}(\tilde{c}_{i})) = q_{\#}(\partial \tilde{c}_{i}) = q_{\#}(0) = 0$. To show that $q_{\#}(\tilde{c}_{i})$ is minimal let s' be a subcycle of $q_{\#}(\tilde{c}_{i})$ and define a p-chain s on X by

$$\mathbf{s}(\sigma) = \begin{cases} \tilde{\mathbf{c}}_{\mathbf{i}}(\sigma) & \text{if } \mathbf{q}_{\#}(\sigma) \neq 0 \text{ and } \mathbf{s}'(\mathbf{q}_{\#}(\sigma)) \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

The proof that s is a subchain of \tilde{c}_i such that $q_{\#}(s) = s'$ is straightforward.

Suppose σ is an oriented p-simplex in $St(\eta, \tilde{X})$. Then dim $q(\sigma) < p$ so $q_{\#}(\sigma) = 0$. By definition $s(\sigma) = 0$. Thus s is carried by $Ast(\eta, \tilde{X})$. Because \tilde{c}_i and c_i are identical on $Ast(\eta, \tilde{X})$ it follows that s is a subchain of c_i . We have $q_{\#}(\partial s) = \partial(q_{\#}(s)) = \partial s' = 0$. Hence by Proposition 7, ∂s is trivial on $Asusp(\eta, \tilde{X})$, i.e. is carried by $St(\eta, \tilde{X}) \cup Susp(\eta, \tilde{X})$. But because s is carried by $Ast(\eta, \tilde{X})$, ∂s is carried by $Ast(\eta, \tilde{X})$. Therefore ∂s is carried by $Susp(\eta, \tilde{X})$.

Hence because c_i is minimal modulo $Susp(\eta, \tilde{X})$ either s = 0 or $s = c_i$. Clearly s = 0 implies that $s' = q_{\#}(s) = 0$. If $s = c_i$ then $s' = q_{\#}(c_i) = q_{\#}(\tilde{c}_i)$. Hence $q_{\#}(\tilde{c}_i)$ is minimal.

(ii) Suppose that $\operatorname{supp} q_{\#}(\tilde{c}_i) \neq q(\operatorname{supp} \tilde{c}_i)$. By Lemma 12 there is a p-simplex τ in $q(\operatorname{supp} c_i)$ that is not in $\operatorname{supp} q_{\#}(c_i)$. Then by Lemma 11, if S' is the set of distinct p-simplices of supp \tilde{c}_i in $q^{-1}(\tau)$, then there are at least 2 distinct p-simplices in S', and for any orientation of τ and the elements of S' such that $q_{\#}(\sigma) = \tau$ whenever $\sigma \in S'$, we have that $c_i(\sigma) \neq 0$ if $\sigma \in S'$ and that $\sum_{\sigma \in S'} c_i(\sigma) = 0$. If $\sigma \in S'$ the dimension of σ does not decrease under the contraction q so σ must be in $\operatorname{Ast}(\eta, \tilde{X})$; furthermore, because there are at least 2 distinct p-simplices in $q^{-1}(q(\sigma))$, σ cannot be in $\operatorname{Asusp}(\eta, \tilde{X})$: thus σ must be in $\operatorname{Susp}(\eta, \tilde{X})$ and so the p-simplices in $q^{-1}(q(\sigma))$ must be exactly σ and σ^* . Hence $w \in \tau$. Orient τ . We defined p-complete only when $p \geq 2$, so there is an oriented (p-1)-simplex ρ such that $\tau = [w, \rho]$. Then $\{\sigma, \sigma^*\} = \{[u, \rho], [w, \rho]\}$.

Without loss of generality let $\sigma = [w,\rho]$ and $\sigma^* = [u,\rho]$. Let g = $c_i(\sigma)$ and $g^* = c_i(\sigma^*)$. Recall that $c_i(\sigma) + c_i(\sigma^*) = 0$ so that $g^* = -g$. We have that $g\sigma + g^*\sigma^*$ is a subchain of c_i and that $\partial(g\sigma + g^*\sigma^*)$ = $\partial(g\sigma - g\sigma^*) = g(\rho - [w,\partial\rho] - \rho + [u,\partial\rho]) = g([u,\partial\rho] - [w,\partial\rho])$, which is carried by $Susp(\eta, \tilde{X})$. By hypothesis c_i is minimal modulo $Susp(\eta, \tilde{X})$ and so $c_i = g\sigma + g^*\sigma^*$. By Proposition 9 the unique p-chain b carried by $St(\eta, \tilde{X})$ such that $\partial b = \partial c_i$ is $b = -g[u,w,\partial\rho]$. Hence $\tilde{c}_i = g([w,\rho] - [u,\rho] - [u,w,\partial\rho])$ $= g\partial[u,w,\rho]$. Because $\pi \in \text{supp } \tilde{c}_i$ if and only if π is a nonempty proper subset of $\{u,w\} * \rho = V(\text{supp } \tilde{c}_i)$ we have supp $\tilde{c}_i = \dot{\Delta}(V(\text{supp } \tilde{c}_i))$. Q.E.D.

6. The Proofs of Propositions 14 and 15.

<u>Proposition 14</u>. If a graph G has a vertex covering subgraph family of generically d-rigid subgraphs that is vertex connected with multiplicity d then G is generically d-rigid.

Proof. Suppose that G has a vertex covering subgraph family F of generically d-rigid subgraphs that is vertex connected with multiplicity d. Let k = |F|. Choose any subgraph in F and call it G_1 . Set $A_1 = \{G_1\}$ and $B_1 = F \setminus A_1$. Note that $|A_1| = 1$ and that $\bigcup_{\substack{H \in A_1}} H = G_1$ is generically $H \in A_1$

d-rigid by hypothesis. We proceed recursively as follows:

Whenever $1 \leq i \leq k$ suppose that $\{A_i, B_i\}$ is a bipartition of F such that $|A_i| = i$ and \bigcup H is a generically d-rigid subgraph of G. Because $H \in A_i$ F is vertex connected with multiplicity d there is a graph $G_{i+1} \in B_i$ with d vertices in common with some graph in A_i and so with \bigcup H. By $H \in A_i$ hypothesis G_{i+1} is generically d-rigid and so by Proposition 3 $(\bigcup H) \cup G_{i+1}$ is generically d-rigid. Hence if we let A_{i+1} $H \in A_i$ $= A_i \cup \{G_{i+1}\}$ and $B_{i+1} = F \setminus A_{i+1}$ we have that that $\{A_{i+1}, B_{i+1}\}$ is a bipartition of F (unless i+1 = k) such that $|A_{i+1}| = i+1$ and $\bigcup H$ is a $H \in A_{i+1}$ generically d-rigid subgraph of G. We conclude that $A_k = F$ and that $\bigcup H$ is a generically d-rigid subgraph of G. Because F is vertex covering $\bigcup H$ spans G. Thus by $H \in F$ Proposition 2, G is generically d-rigid. Q.E.D.

<u>Proposition 15</u>. Let X be an abstract simplicial complex with $\{u,w\}$ = $\eta \in S^1(X)$. For some $p \ge 2$, let c be a p-cycle on X with coefficients in some abelian group Γ , let c' be the restriction of c to $Ast(\eta,X)$, and let \tilde{X} be the p-completion of X over η . If $\{c_1, c_2, c_3, \ldots, c_k\}$ is a decomposition of c' modulo $Susp(\eta, \tilde{X})$, then $\sum_{i=1}^{k} \tilde{c}_i = c$, where \tilde{c}_i is the completion of c_i over η for $1 \le i \le k$. If, in addition, c is minimal and G_i denotes the 1-skeleton of supp \tilde{c}_i for $1 \le i \le k$, then $\{G_1, G_2, G_3, \ldots, G_k\}$ is a vertex covering subgraph family of $\bigcup_{i=1}^{k} G_i$ that is vertex connected with multiplicity p+1.

Proof. The cycle $\sum_{i=1}^{k} \tilde{c}_i$ equals the sum of the chain $\sum_{i=1}^{k} c_i = c'$ and some chain carried by $St(\eta, \tilde{X})$. Because the completion of c' over η is unique, $\sum_{i=1}^{k} \tilde{c}_i = c$.

If, in addition, c is minimal, let {A,B} be a bipartition of {1,2,3, . . . ,k}. Hence both A and B are nonempty. Thus we have that 0 $\neq \sum_{i \in A} c_i \neq c'$ and $0 \neq \sum_{i \in B} c_i \neq c'$. It follows that $0 \neq \sum_{i \in A} \tilde{c}_i \neq c$ and 0 $\neq \sum_{i \in B} \tilde{c}_i \neq c$. Because c is minimal $\sum_{i \in A} \tilde{c}_i$ cannot be a subcycle of c. $i \in B^{-1}$ Hence there is a p-simplex σ such that $0 \neq (\sum_{i \in A} \tilde{c}_i)(\sigma) \neq c(\sigma)$. Because $\sum_{i \in B} \tilde{c}_i = c$ we have $0 \neq (\sum_{i \in B} \tilde{c}_i)(\sigma)$ also. Thus for some indices a in A and i = 1b in B we have $\tilde{c}_a(\sigma)$ and $\tilde{c}_b(\sigma)$ to be nontrivial. Because both supp \tilde{c}_a and supp \tilde{c}_b contain the p-simplex σ , $V(G_a)$ and $V(G_b)$ have at least p+1 common elements. Clearly then $\{G_1, G_2, G_3, \ldots, G_k\}$ is a vertex covering subgraph family of $\bigcup_{i=1}^k G_i$ that is vertex connected with multiplicity p+1. Q.E.D.

7. The Proof of the Result.

<u>Theorem</u>. The 1-skeleton of a minimal (d-1)-cycle complex, $d \ge 3$, is generically d-rigid.

Proof. We use induction on the number of vertices in the complex. Recall we noted that if d-1 > 0, all (d-1)-cycle complexes have at least d+1 vertices; furthermore there are minimal (d-1)-cycle complexes with only d+1 vertices, and the 1-skeletons of these complexes are complete graphs, which are generically d-rigid by Proposition 1.

Suppose X is a minimal (d-1)-cycle complex with more than d+1 vertices and assume that the 1-skeleton of any minimal (d-1)-cycle complex with fewer vertices than X is generically d-rigid. Let c be a minimal (d-1)-cycle on X with coefficients in some abelian group Γ such that supp c = X. Let {u,w} = η be any 1-simplex of X. Because d-1 ≥ 2 we can form the (d-1)-completion of X over η , which we denote by \tilde{X} . Let c' be the restriction of c to Ast (η, \tilde{X}) . It follows that $\partial c'$ is carried by Susp (η, \tilde{X}) . Recall that c cannot be carried by St $(\eta, \text{supp c}) = \text{St}(\eta, X)$, so c' is nontrivial. Hence there is a maximal decomposition D = {c₁, c₂, c₃, . . . , c_k} of c' modulo Susp (η, \tilde{X}) .

Let $1 \leq i \leq k$. By the definition of D we know that c_i is a (d-1)-chain carried by $Ast(\eta, \tilde{X})$ and that ∂c_i is carried by $Susp(\eta, \tilde{X})$. By Proposition 10 the unique completion of c_i over η exists and we denote it by \tilde{c}_i . Let q be the labelling of $V(X) = V(\tilde{X})$ contracting η to w. Recall that c cannot be carried by $Ast(\eta, supp c) = Ast(\eta, X)$, so c' is a proper

subchain of c, and c_i is a nontrivial proper subchain of c. Since c is a minimal cycle, c_i is not a cycle; recall that therefore η is a member of the support complex of the completion of c_i over η , i.e. $\eta \in \text{supp } \tilde{c}_i$. Thus q does contract an edge of supp \tilde{c}_i . Because D is maximal c_i is minimal modulo $\text{Susp}(\eta, \tilde{X})$ and hence by Proposition 13 $q_{\#}(\tilde{c}_i)$ is a minimal (d-1)-cycle on q(X) and either supp $q_{\#}(\tilde{c}_i) = q(\text{supp } \tilde{c}_i)$ or supp $\tilde{c}_i = \dot{\Delta}(V(\text{supp } \tilde{c}_i))$, the simplex boundary complex on its own vertex set.

Let G_i be the 1-skeleton of supp \tilde{c}_i . Then the 1-skeleton of $q(\text{supp } \tilde{c}_i)$ is $q(G_i)$. If $q(\text{supp } \tilde{c}_i) = \text{supp } q_{\#}(\tilde{c}_i)$ then $q(\text{supp } \tilde{c}_i)$ is a minimal (d-1)-cycle complex without the vertex u and so by the induction hypothesis $q_i(G_i)$ is generically d-rigid. Because supp \tilde{c}_i is a (d-1)-cycle complex, η is an edge of at least 2 distinct (d-1)-simplices of supp \tilde{c}_i ; thus η is an edge in at least d-1 distinct triangles of G_i . Thus by Theorem 4 the generic d-rigidity of $q(G_i)$ implies the generic d-rigidity of $q(G_i)$ implies the generic d-rigidity of $q(G_i)$ in the other hand, if supp $\tilde{c}_i = \dot{\Delta}(V(\text{supp } \tilde{c}_i))$ then because d-1 > 0, G_i is a complete graph and so generically d-rigid.

By Proposition 15 $\sum_{i=1}^{k} \tilde{c}_{i} = c$; hence clearly $X = \operatorname{supp} c \subset \bigcup_{i=1}^{k} \operatorname{supp} \tilde{c}_{i}$. Thus $X^{1} \subset \bigcup_{i=1}^{k} G_{i} \subset \tilde{X}^{1}$. But $X^{1} = \tilde{X}^{1}$ so $X^{1} = \bigcup_{i=1}^{k} G_{i}$. Furthermore, because c is minimal, by Proposition 15 $\{G_{1}, G_{2}, G_{3}, \ldots, G_{k}\}$ is a vertex covering subgraph family of $\bigcup_{i=1}^{k} G_{i} = X^{1}$ that is vertex connected with multiplicity d. Thus because G_{i} is generically d-rigid for $1 \leq i \leq k$, by Proposition 14, X^{1} is generically d-rigid also.

The theorem follows by induction. Q.E.D.