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If F is an abelian group and X is a finite abstract simplicial

complex, a p-cycle of oriented p-simplices of X with coefficients in F

can be regarded as a formal sum that is mapped to 0 by the usual boundary

operator of algebraic topology. If c and c7 are p-cycles we say that c7

is a subcycle of c if for every simplex cr the coefficient of a in c/ is

either 0 or equals the coefficient of a in c. We say c is minimal if its

only subcycles are 0 and c. Ve call a finite abstract simplicial complex

X a p-cycle complex if there is a group F and a p-cycle c of oriented

p-simplices of X with coefficients in F such that X equals the support of

c. We call X minimal if c is minimal. For d > 3, we show that a

realization in d-space of the 1-skeleton of a minimal (d-1)-cycle complex

is a generically rigid framework, i.e. the 1-skeleton is a generically

d-rigid graph.

The proof is by induction on the number of vertices of X. We show

there is a finite set of subgraphs of the 1-skeleton of X satisfying the

following conditions: (1) each subgraph has an edge contained in at

least d-1 triangles and such that when the edge is contracted a smaller

graph is formed which is the 1-skeleton of another minimal (d-1)-cycle

complex, or else the original subgraph is the 1-skeleton of a d-simplex;

(2) if the set of subgraphs is partitioned into two subsets then the



union of the subgraphs in one subset shares at least d vertices with the

union of the subgraphs in the other subset; (3) the union of the

subgraphs equals the 1-skeleton of X. The 1-skeletons of d-simplices are

generically d-rigid, and by a recent theorem of Walter Vhiteley's, if a

graph has an edge contained in at least d-1 triangles and such that when

the edge is contracted a smaller graph is formed which is generically

d-rigid, then the original graph is also generically d-rigid. Thus

assuming that the 1-skeletons of minimal (d-1)-cycles with fewer vertices

than X are generically d-rigid, condition (1) insures that the subgraphs

are generically d-rigid. Ve show that condition (2) insures that their

union is generically d-rigid, so that by condition (3) X is generically

d-rigid. A corollary is that connected closed triangulated polyhedral

surfaces are generically rigid.
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